DSPRelated.com
The 2025 DSP Online Conference

3 Good News

Stephane Boucher March 9, 20161 comment
Good News #1

Last week, I announced a new and ambitious reward program that will be funded by the new Vendors Directory.

This week, I am happy to announce that we have our firsts two sponsors!  Quantum Leaps & Abelon Systems have agreed to pay the sponsorship fee to be listed in the new Vendors Directory.  Because of their support, there is now some money in the reward pool ($1,000) and enough to pay for the firsts 500 'beers' awarded.  Please...


Padé Delay is Okay Today

Jason Sachs March 1, 20166 comments

This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.

Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:

Impressed? Maybe you should be. This...


The New Forum is LIVE!

Stephane Boucher February 18, 20161 comment

After months of hard word, I am very excited to introduce to you the new forum interface.  

Here are the key features:

1- Easily add images to a post by drag & dropping the images in the editor

2- Easily attach files to a post by drag & dropping the files in the editor

3- Add latex equations to a post and they will be rendered with Mathjax (tutorial)

4- Add a code snippet and surround the code with


Autocorrelation and the case of the missing fundamental

Allen Downey January 21, 201610 comments

[UPDATED January 25, 2016:  One of the examples was broken, also the IPython notebook links now point to nbviewer, where you can hear the examples.]

For sounds with simple harmonic structure, the pitch we perceive is usually the fundamental frequency, even if it is not dominant.  For example, here's the spectrum of a half-second recording of a saxophone.

The first three peaks are at 464, 928, and 1392 Hz.  The pitch we perceive is the fundamental, 464 Hz, which is close to...


Generating pink noise

Allen Downey January 20, 20161 comment

In one of his most famous columns for Scientific American, Martin Gardner wrote about pink noise and its relation to fractal music.  The article was based on a 1978 paper by Voss and Clarke, which presents, among other things, a simple algorithm for generating pink noise, also known as 1/f noise.

The fundamental idea of the algorithm is to add up several sequences of uniform random numbers that get updated at different rates. The first source gets updated at...


Ancient History

Mike January 18, 20168 comments

The other day I was downloading an IDE for a new (to me) OS.  When I went to compile some sample code, it failed.  I went onto a forum, where I was told "if you read the release notes you'd know that the peripheral libraries are in a legacy download".  Well damn!  Looking back at my previous versions I realized I must have done that and forgotten about it.  Everything changes, and keeping up with it takes time and effort.

When I first started with microprocessors we...


Dealing With Fixed Point Fractions

Mike January 5, 20163 comments

Fixed point fractional representation always gives me a headache because I screw it up the first time I try to implement an algorithm. The difference between integer operations and fractional operations is in the overflow.  If the representation fits in the fixed point result, you can not tell the difference between fixed point integer and fixed point fractions.  When integers overflow, they lose data off the most significant bits.  When fractions overflow, they lose data off...


Optimizing the Half-band Filters in Multistage Decimation and Interpolation

Rick Lyons January 4, 201616 comments

This blog discusses a not so well-known rule regarding the filtering in multistage decimation and interpolation by an integer power of two. I'm referring to sample rate change systems using half-band lowpass filters (LPFs) as shown in Figure 1. Here's the story.

Figure 1: Multistage decimation and interpolation using half-band filters.

Multistage Decimation – A Very Brief Review

Figure 2(a) depicts the process of decimation by an integer factor D. That...


The DFT Output and Its Dimensions

Leonid Ovanesyan December 29, 20155 comments

The Discrete Fourier Transform, or DFT, converts a signal from discrete time to discrete frequency. It is commonly implemented as and used as the Fast Fourier Transform (FFT). This article will attempt to clarify the format of the DFT output and how it is produced.

Living in the real world, we deal with real signals. The data we typically sample does not have an imaginary component. For example, the voltage sampled by a receiver is a real value at a particular point in time. Let’s...


Amplitude modulation and the sampling theorem

Allen Downey December 18, 20156 comments

I am working on the 11th and probably final chapter of Think DSP, which follows material my colleague Siddhartan Govindasamy developed for a class at Olin College.  He introduces amplitude modulation as a clever way to sneak up on the Nyquist–Shannon sampling theorem.

Most of the code for the chapter is done: you can check it out in this IPython notebook.  I haven't written the text yet, but I'll outline it here, and paste in the key figures.

Convolution...


Exponential Smoothing with a Wrinkle

Cedron Dawg December 17, 20154 comments
Introduction

This is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by providing a set of preprocessing filters to improve the resolution of the DFT. Because of the exponential nature of sinusoidal functions, they have special mathematical properties when exponential smoothing is applied to them. These properties are derived and explained in this blog article.

Basic Exponential Smoothing

Exponential smoothing is also known as...


A DSP Quiz Question

Rick Lyons December 5, 202112 comments

Here's a DSP Quiz Question that I hope you find mildly interesting

BACKGROUND

Due to the periodic natures an N-point discrete Fourier transform (DFT) sequence and that sequence’s inverse DFT, it is occasionally reasonable to graphically plot either of those sequences as a 3-dimensional (3D) circular plot. For example, Figure 1(a) shows a length-32 x(n) sequence with its 3D circular plot given in Figure 1(b).

HERE'S THE QUIZ QUESTION:

I was reading a paper by an audio DSP engineer where the...

Feedback Controllers - Making Hardware with Firmware. Part 4. Engineering of Evaluation Hardware

Steve Maslen October 10, 2017
Following on from the previous abstract descriptions of an arbitrary circuit emulation application for low-latency feedback controllers, we now come to some aspects in the hardware engineering of an evaluation design from concept to first power-up. In due course a complete specification along with  application  examples will be maintained on the project website. 

A New Contender in the Quadrature Oscillator Race

Rick Lyons September 24, 20227 comments

This blog advocates a relatively new and interesting quadrature oscillator developed by A. David Levine in 2009 and independently by Martin Vicanek in 2015 [1]. That oscillator is shown in Figure 1.

The time domain equations describing the Figure 1 oscillator are

     w(n) =...


Feedback Controllers - Making Hardware with Firmware. Part 9. Closing the low-latency loop

Steve Maslen July 9, 2018

It's time to put together the DSP and feedback control sciences, the evaluation electronics, the Intel Cyclone floating-point FPGA algorithms and the built-in control loop test-bed and evaluate some example designs. We will be counting the nanoseconds and looking for textbook performance in the creation of emulated hardware circuits. Along the way, there is a printed circuit board (PCB) issue to solve using DSP.    

Fig 1. The evaluation platform

Additional design...


Modeling Anti-Alias Filters

Neil Robertson September 26, 2021

Digitizing a signal using an Analog to Digital Converter (ADC) usually requires an anti-alias filter, as shown in Figure 1a.  In this post, we’ll develop models of lowpass Butterworth and Chebyshev anti-alias filters, and compute the time domain and frequency domain output of the ADC for an example input signal.  We’ll also model aliasing of Gaussian noise.  I hope the examples make the textbook explanations of aliasing seem a little more real.  Of course, modeling of...


FIR sideways (interpolator polyphase decomposition)

Markus Nentwig September 12, 20129 comments

An efficient implementation of a symmetric-FIR polyphase 1:3 interpolator that doesn't follow the usual tapped delay line-paradigm. The example exploits the impulse response symmetry and avoids four multiplications out of 10. keywords: symmetric polyphase FIR filter implementation ASIC Matlab / Octave implementation

Introduction

An interpolating FIR filter can be implemented with a single tapped delay line, possibly going forwards and backwards for a symmetric impulse response. To...


Resolving 'Can't initialize target CPU' on TI C6000 DSPs - Part 1

Mike Dunn October 30, 200715 comments

Introduction

Today I am going to discuss some of the basics that can help prevent errors that frustrate some users. The information is directed toward TI C6000 family DSPs, but much of it also applies to other TI DSPs. In many cases they represent the user's first involvement with using Code Composer Studio [CCS] and a target board. It has been my experience that the primary cause of the "Can't initialize target CPU" error message and similar messages like "Error connecting to...


Generating Partially Correlated Random Variables

Harry Commin March 23, 201921 comments
IntroductionIt is often useful to be able to generate two or more signals with specific cross-correlations. Or, more generally, we would like to specify an $\left(N \times N\right)$ covariance matrix, $\mathbf{R}_{xx}$, and generate $N$ signals which will produce this covariance matrix.

There are many applications in which this technique is useful. I discovered a version of this method while analysing radar systems, but the same approach can be used in a very wide range of...


An Efficient Full-Band Sliding DFT Spectrum Analyzer

Rick Lyons April 1, 20217 comments

In this blog I present two computationally efficient full-band discrete Fourier transform (DFT) networks that compute the 0th bin and all the positive-frequency bin outputs for an N-point DFT in real-time on a sample-by-sample basis.

An Even-N Spectrum Analyzer

The full-band sliding DFT (SDFT) spectrum analyzer network, where the DFT size N is an even integer, is shown in Figure 1(a). The x[n] input sequence is restricted to be real-only valued samples. Notice that the only real parts of...


The 2025 DSP Online Conference