3 Good News
Good News #1Last week, I announced a new and ambitious reward program that will be funded by the new Vendors Directory.
This week, I am happy to announce that we have our firsts two sponsors! Quantum Leaps & Abelon Systems have agreed to pay the sponsorship fee to be listed in the new Vendors Directory. Because of their support, there is now some money in the reward pool ($1,000) and enough to pay for the firsts 500 'beers' awarded. Please...
Padé Delay is Okay Today
This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.
Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:
Impressed? Maybe you should be. This...
The New Forum is LIVE!
After months of hard word, I am very excited to introduce to you the new forum interface.
Here are the key features:
1- Easily add images to a post by drag & dropping the images in the editor
2- Easily attach files to a post by drag & dropping the files in the editor
3- Add latex equations to a post and they will be rendered with Mathjax (tutorial)
4- Add a code snippet and surround the code with
Autocorrelation and the case of the missing fundamental
[UPDATED January 25, 2016: One of the examples was broken, also the IPython notebook links now point to nbviewer, where you can hear the examples.]
For sounds with simple harmonic structure, the pitch we perceive is usually the fundamental frequency, even if it is not dominant. For example, here's the spectrum of a half-second recording of a saxophone.
The first three peaks are at 464, 928, and 1392 Hz. The pitch we perceive is the fundamental, 464 Hz, which is close to...
Generating pink noise
In one of his most famous columns for Scientific American, Martin Gardner wrote about pink noise and its relation to fractal music. The article was based on a 1978 paper by Voss and Clarke, which presents, among other things, a simple algorithm for generating pink noise, also known as 1/f noise.
The fundamental idea of the algorithm is to add up several sequences of uniform random numbers that get updated at different rates. The first source gets updated at...
Ancient History
The other day I was downloading an IDE for a new (to me) OS. When I went to compile some sample code, it failed. I went onto a forum, where I was told "if you read the release notes you'd know that the peripheral libraries are in a legacy download". Well damn! Looking back at my previous versions I realized I must have done that and forgotten about it. Everything changes, and keeping up with it takes time and effort.
When I first started with microprocessors we...
Dealing With Fixed Point Fractions
Fixed point fractional representation always gives me a headache because I screw it up the first time I try to implement an algorithm. The difference between integer operations and fractional operations is in the overflow. If the representation fits in the fixed point result, you can not tell the difference between fixed point integer and fixed point fractions. When integers overflow, they lose data off the most significant bits. When fractions overflow, they lose data off...
Optimizing the Half-band Filters in Multistage Decimation and Interpolation
This blog discusses a not so well-known rule regarding the filtering in multistage decimation and interpolation by an integer power of two. I'm referring to sample rate change systems using half-band lowpass filters (LPFs) as shown in Figure 1. Here's the story.
Figure 1: Multistage decimation and interpolation using half-band filters.
Multistage Decimation – A Very Brief ReviewFigure 2(a) depicts the process of decimation by an integer factor D. That...
The DFT Output and Its Dimensions
The Discrete Fourier Transform, or DFT, converts a signal from discrete time to discrete frequency. It is commonly implemented as and used as the Fast Fourier Transform (FFT). This article will attempt to clarify the format of the DFT output and how it is produced.
Living in the real world, we deal with real signals. The data we typically sample does not have an imaginary component. For example, the voltage sampled by a receiver is a real value at a particular point in time. Let’s...
Amplitude modulation and the sampling theorem
I am working on the 11th and probably final chapter of Think DSP, which follows material my colleague Siddhartan Govindasamy developed for a class at Olin College. He introduces amplitude modulation as a clever way to sneak up on the Nyquist–Shannon sampling theorem.
Most of the code for the chapter is done: you can check it out in this IPython notebook. I haven't written the text yet, but I'll outline it here, and paste in the key figures.
Convolution...
Some Thoughts on Sampling
Some time ago, I came across an interesting problem. In the explanation of sampling process, a representation of impulse sampling shown in Figure 1 below is illustrated in almost every textbook on DSP and communications. The question is: how is it possible that during sampling, the frequency axis gets scaled by $1/T_s$ -- a very large number? For an ADC operating at 10 MHz for example, the amplitude of the desired spectrum and spectral replicas is $10^7$! I thought that there must be...
Frequency Dependence in Free Space Propagation
Introduction
It seems to be fairly common knowledge, even among practicing professionals, that the efficiency of propagation of wireless signals is frequency dependent. Generally it is believed that lower frequencies are desirable since pathloss effects will be less than they would be at higher frequencies. As evidence of this, the Friis Transmission Equation[i] is often cited, the general form of which is usually written as:
Pr = Pt Gt Gr ( λ / 4πd )2 (1)
where the...
Model Signal Impairments at Complex Baseband
In this article, we develop complex-baseband models for several signal impairments: interfering carrier, multipath, phase noise, and Gaussian noise. To provide concrete examples, we’ll apply the impairments to a QAM system. The impairment models are Matlab functions that each use at most seven lines of code. Although our example system is QAM, the models can be used for any complex-baseband signal.
I used a very simple complex-baseband model of a QAM system in my last
Adaptive Beamforming is like Squeezing a Water Balloon
Adaptive beamforming was first developed in the 1960s for radar and sonar applications. The main idea is that signals can be captured using multiple sensors and the sensor outputs can be combined to enhance the signals propagating from specific directions and attenuate (null out) signals from other directions. It has grown immensely in recent years as processors have become faster and cheaper. Today, adaptive beamforming applications include smart speakers (like the Amazon Echo),...
Beat Notes: An Interesting Observation
Some weeks ago a friend of mine, a long time radio engineer as well as a piano player, called and asked me,
"When I travel in a DC-9 aircraft, and I sit back near the engines, I hear this fairly loud unpleasant whump whump whump whump sound. The frequency of that sound is, maybe, two cycles per second. I think that sound is a beat frequency because the DC-9's engines are turning at a slightly different number of revolutions per second. My question is, what sort of mechanism in the airplane...
Harmonic Notch Filter
My basement is covered with power lines and florescent lights which makes collecting ECG and EEG data rather difficult due to the 60 cycle hum. I found the following notch filter to work very well at eliminating the background signal without effecting the highly amplified signals I was looking for.
The notch filter is based on the a transfer function with the form $$H(z)=\frac{1}{2}(1+A(z))$$ where A(z) is an all pass filter. The original paper [1] describes a method to...
Exponential Smoothing with a Wrinkle
IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by providing a set of preprocessing filters to improve the resolution of the DFT. Because of the exponential nature of sinusoidal functions, they have special mathematical properties when exponential smoothing is applied to them. These properties are derived and explained in this blog article.
Basic Exponential Smoothing
Exponential smoothing is also known as...
Project update-2 : Digital Filter Blocks in MyHDL and their integration in pyFDA
This is an exciting update in the sense that it demonstrates a working model of one important aspect of the project: The integration or ‘glue’ between and Pyfda and MyHDL filter blocks.
So, why do we need to integrate and how do we go about it?
As discussed in earlier posts, the idea is to provide a workflow in Pyfda that automates the process of Implementing a fixpoint filter in VHDL / Verilog, and verify the correct performance in a digital design environment. MyHDL based...
DFT Graphical Interpretation: Centroids of Weighted Roots of Unity
IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with...
Generating Partially Correlated Random Variables
IntroductionIt is often useful to be able to generate two or more signals with specific cross-correlations. Or, more generally, we would like to specify an $\left(N \times N\right)$ covariance matrix, $\mathbf{R}_{xx}$, and generate $N$ signals which will produce this covariance matrix.There are many applications in which this technique is useful. I discovered a version of this method while analysing radar systems, but the same approach can be used in a very wide range of...
Exponential Smoothing with a Wrinkle
IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by providing a set of preprocessing filters to improve the resolution of the DFT. Because of the exponential nature of sinusoidal functions, they have special mathematical properties when exponential smoothing is applied to them. These properties are derived and explained in this blog article.
Basic Exponential Smoothing
Exponential smoothing is also known as...
A DSP Quiz Question
Here's a DSP Quiz Question that I hope you find mildly interesting
BACKGROUND
Due to the periodic natures an N-point discrete Fourier transform (DFT) sequence and that sequence’s inverse DFT, it is occasionally reasonable to graphically plot either of those sequences as a 3-dimensional (3D) circular plot. For example, Figure 1(a) shows a length-32 x(n) sequence with its 3D circular plot given in Figure 1(b).
HERE'S THE QUIZ QUESTION:
I was reading a paper by an audio DSP engineer where the...Feedback Controllers - Making Hardware with Firmware. Part 4. Engineering of Evaluation Hardware
Following on from the previous abstract descriptions of an arbitrary circuit emulation application for low-latency feedback controllers, we now come to some aspects in the hardware engineering of an evaluation design from concept to first power-up. In due course a complete specification along with application examples will be maintained on the project website.- Part 1: Introduction
- Part 2:...
A New Contender in the Quadrature Oscillator Race
This blog advocates a relatively new and interesting quadrature oscillator developed by A. David Levine in 2009 and independently by Martin Vicanek in 2015 [1]. That oscillator is shown in Figure 1.
The time domain equations describing the Figure 1 oscillator are
w(n) =...
Feedback Controllers - Making Hardware with Firmware. Part 9. Closing the low-latency loop
It's time to put together the DSP and feedback control sciences, the evaluation electronics, the Intel Cyclone floating-point FPGA algorithms and the built-in control loop test-bed and evaluate some example designs. We will be counting the nanoseconds and looking for textbook performance in the creation of emulated hardware circuits. Along the way, there is a printed circuit board (PCB) issue to solve using DSP.
Fig 1. The evaluation platform
Additional design...
Modeling Anti-Alias Filters
Digitizing a signal using an Analog to Digital Converter (ADC) usually requires an anti-alias filter, as shown in Figure 1a. In this post, we’ll develop models of lowpass Butterworth and Chebyshev anti-alias filters, and compute the time domain and frequency domain output of the ADC for an example input signal. We’ll also model aliasing of Gaussian noise. I hope the examples make the textbook explanations of aliasing seem a little more real. Of course, modeling of...
FIR sideways (interpolator polyphase decomposition)
An efficient implementation of a symmetric-FIR polyphase 1:3 interpolator that doesn't follow the usual tapped delay line-paradigm. The example exploits the impulse response symmetry and avoids four multiplications out of 10. keywords: symmetric polyphase FIR filter implementation ASIC Matlab / Octave implementation
IntroductionAn interpolating FIR filter can be implemented with a single tapped delay line, possibly going forwards and backwards for a symmetric impulse response. To...
Resolving 'Can't initialize target CPU' on TI C6000 DSPs - Part 1
Introduction
Today I am going to discuss some of the basics that can help prevent errors that frustrate some users. The information is directed toward TI C6000 family DSPs, but much of it also applies to other TI DSPs. In many cases they represent the user's first involvement with using Code Composer Studio [CCS] and a target board. It has been my experience that the primary cause of the "Can't initialize target CPU" error message and similar messages like "Error connecting to...
Generating Partially Correlated Random Variables
IntroductionIt is often useful to be able to generate two or more signals with specific cross-correlations. Or, more generally, we would like to specify an $\left(N \times N\right)$ covariance matrix, $\mathbf{R}_{xx}$, and generate $N$ signals which will produce this covariance matrix.There are many applications in which this technique is useful. I discovered a version of this method while analysing radar systems, but the same approach can be used in a very wide range of...
An Efficient Full-Band Sliding DFT Spectrum Analyzer
In this blog I present two computationally efficient full-band discrete Fourier transform (DFT) networks that compute the 0th bin and all the positive-frequency bin outputs for an N-point DFT in real-time on a sample-by-sample basis.
An Even-N Spectrum Analyzer
The full-band sliding DFT (SDFT) spectrum analyzer network, where the DFT size N is an even integer, is shown in Figure 1(a). The x[n] input sequence is restricted to be real-only valued samples. Notice that the only real parts of...























