Exact Frequency Formula for a Pure Real Tone in a DFT
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving an exact formula for the frequency of a real tone in a DFT. According to current teaching, this is not possible, so this article should be considered a major theoretical advance in the discipline. The formula is presented in a few different formats. Some sample calculations are provided to give a numerical demonstration of the formula in use. This article is...
DFT Bin Value Formulas for Pure Real Tones
IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by deriving an analytical formula for the DFT of pure real tones. The formula is used to explain the well known properties of the DFT. A sample program is included, with its output, to numerically demonstrate the veracity of the formula. This article builds on the ideas developed in my previous two blog articles:
DFT Graphical Interpretation: Centroids of Weighted Roots of Unity
IntroductionThis is an article to hopefully give a better understanding to the Discrete Fourier Transform (DFT) by framing it in a graphical interpretation. The bin calculation formula is shown to be the equivalent of finding the center of mass, or centroid, of a set of points. Various examples are graphed to illustrate the well known properties of DFT bin values. This treatment will only consider real valued signals. Complex valued signals can be analyzed in a similar manner with...
Why Time-Domain Zero Stuffing Produces Multiple Frequency-Domain Spectral Images
This blog explains why, in the process of time-domain interpolation (sample rate increase), zero stuffing a time sequence with zero-valued samples produces an increased-length time sequence whose spectrum contains replications of the original time sequence's spectrum.
Background
The traditional way to interpolate (sample rate increase) an x(n) time domain sequence is shown in Figure 1.
Figure 1
The '↑ L' operation in Figure 1 means to...
The Exponential Nature of the Complex Unit Circle
IntroductionThis is an article to hopefully give an understanding to Euler's magnificent equation:
$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$
This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.
Complex...Complex Down-Conversion Amplitude Loss
This blog illustrates the signal amplitude loss inherent in a traditional complex down-conversion system. (In the literature of signal processing, complex down-conversion is also called "quadrature demodulation.")
The general idea behind complex down-conversion is shown in Figure 1(a). And the traditional hardware block diagram of a complex down-converter is shown in Figure 1(b).
Let's assume the input to our down-conversion system is an analog radio frequency (RF) signal,...
The Sampling Theorem - An Intuitive Approach
Scott Kurtz from DSPSoundWare.com has put together a video presentation that aims to help DSPers gain a better intuitive understanding of the Sampling Theorem. Feel free to have a look and share your thoughts by commenting this blog post.
A poor man's Simulink
Glue between Octave and NGSPICE for discrete- and continuous time cosimulation (download) Keywords: Octave, SPICE, Simulink
IntroductionMany DSP problems have close ties with the analog world. For example, a switched-mode audio power amplifier uses a digital control loop to open and close power transistors driving an analog filter. There are commercial tools for digital-analog cosimulation: Simulink comes to mind, and mainstream EDA vendors support VHDL-AMS or Verilog-A in their...
A Complex Variable Detective Story – A Disconnect Between Theory and Implementation
Recently I was in the middle of a pencil-and-paper analysis of a digital 5-tap FIR filter having complex-valued coefficients and I encountered a surprising and thought-provoking problem. So that you can avoid the algebra difficulty I encountered, please read on.
A Surprising Algebra Puzzle
I wanted to derive the H(ω) equation for the frequency response of my FIR digital filter whose complex coefficients were h0, h1, h2, h3, and h4. I could then test the validity of my H(ω)...
The Number 9, Not So Magic After All
This blog is not about signal processing. Rather, it discusses an interesting topic in number theory, the magic of the number 9. As such, this blog is for people who are charmed by the behavior and properties of numbers.
For decades I've thought the number 9 had tricky, almost magical, qualities. Many people feel the same way. I have a book on number theory, whose chapter 8 is titled "Digits — and the Magic of 9", that discusses all sorts of interesting mathematical characteristics of the...
Phase and Amplitude Calculation for a Pure Complex Tone in a DFT using Multiple Bins
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from several DFT bin values and knowing the frequency. This article is functionally an extension of my prior article "Phase and Amplitude Calculation for a Pure Complex Tone in a DFT"[1] which used only one bin for a complex tone, but it is actually much more similar to my approach for real...
The Risk In Using Frequency Domain Curves To Evaluate Digital Integrator Performance
This blog shows the danger in evaluating the performance of a digital integration network based solely on its frequency response curve. If you plan on implementing a digital integrator in your signal processing work I recommend you continue reading this blog.
Background
Typically when DSP practitioners want to predict the accuracy performance of a digital integrator they compare how closely that integrator's frequency response matches the frequency response of an ideal integrator [1,2]....
Instant CIC
Summary:
A floating point model for a CIC decimator, including the frequency response.
Description:
A CIC filter relies on a peculiarity of its fixed-point implementation: Normal operation involves repeated internal overflows that have no effect to the output signal, as they cancel in the following stage.
One way to put it intuitively is that only the speed (and rate of change) of every little "wheel" in the clockworks carries information, but its absolute position is...
Embedded World 2018 - The Interviews
Once again this year, I had the chance to go to Embedded World in Nuremberg Germany. And once again this year, I brought my video equipment to try and capture some of the most interesting things at the show.
Something new this year, I asked Jacob Beningo if he would partner with me in doing interviews with a few vendors. I would operate the camera while Jacob would ask the right questions to the vendors to make them talk about the key products/features that...
FIR sideways (interpolator polyphase decomposition)
An efficient implementation of a symmetric-FIR polyphase 1:3 interpolator that doesn't follow the usual tapped delay line-paradigm. The example exploits the impulse response symmetry and avoids four multiplications out of 10. keywords: symmetric polyphase FIR filter implementation ASIC Matlab / Octave implementation
IntroductionAn interpolating FIR filter can be implemented with a single tapped delay line, possibly going forwards and backwards for a symmetric impulse response. To...
Python scipy.signal IIR Filter Design Cont.
In the previous post the Python scipy.signal iirdesign function was disected. We reviewed the basics of filter specification and reviewed how to use the iirdesign function to design IIR filters. The previous post I only demonstrated low pass filter designs. The following are examples how to use the iirdesign function for highpass, bandpass, and stopband filters designs.
Highpass FilterThe following is a highpass filter design for the different filter...
TCP/IP interface (Matlab/Octave)
Communicate with measurement instruments via Ethernet (no-toolbox-Matlab or Octave)
PurposeMeasurement automation is digital signal processing in a wider sense: Getting a digital signal from an analog world usually involves some measurement instruments, for example a spectrum analyzer. Modern instruments, and also many off-the-shelf prototyping boards such as FPGA cards [1] or microcontrollers [2] are able to communicate via Ethernet. Here, I provide some basic mex-functions (compiled C...
Multilayer Perceptrons and Event Classification with data from CODEC using Scilab and Weka
For my first blog, I thought I would introduce the reader to Scilab [1] and Weka [2]. In order to illustrate how they work, I will put together a script in Scilab that will sample using the microphone and CODEC on your PC and save the waveform as a CSV file.
Finally got a drone!
As a reader of my blog, you already know that I have been making videos lately and thoroughly enjoying the process. When I was in Germany early this summer (and went 280 km/h in a porsche!) to produce SEGGER's 25th anniversary video, the company bought a drone so we could get an aerial shot of the party (at about the 1:35 mark in this video). Since then, I have been obsessing on buying a drone for myself and finally made the move a few weeks ago - I acquired a used DJI...
Online DSP Classes: Why Such a High Dropout Rate?
Last year the IEEE Signal Processing Magazine published a lengthy article describing three university-sponsored online digital signal processing (DSP) courses [1]. The article detailed all the effort the professors expended in creating those courses and the courses' perceived values to students.
However, one fact that struck me as important, but not thoroughly addressed in the article, was the shocking dropout rate of those online courses. For two of the courses the article's...
Python number crunching faster? Part I
Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc. I have been using Python and the common numerical and scientific packages available. Personally, I have found this to be very useful in my work. Lately there has been some chatter on speeding up Python.
From another project I follow, MyHDL, I was introduced to the Python JIT compiler,
Bayes meets Fourier
Joseph Fourier never met Thomas Bayes—Fourier was born in 1768, seven years after Bayes died. But recently I have been exploring connections between the Bayes filter and the Fourier transform.
By "Bayes filter", I don't mean spam filtering using a Bayesian classifier, but rather recursive Bayesian estimation, which is used in robotics and other domains to estimate the state of a system that evolves over time, for example, the position of a moving robot. My interest in...
Instant CIC
Summary:
A floating point model for a CIC decimator, including the frequency response.
Description:
A CIC filter relies on a peculiarity of its fixed-point implementation: Normal operation involves repeated internal overflows that have no effect to the output signal, as they cancel in the following stage.
One way to put it intuitively is that only the speed (and rate of change) of every little "wheel" in the clockworks carries information, but its absolute position is...
A New Contender in the Quadrature Oscillator Race
This blog advocates a relatively new and interesting quadrature oscillator developed by A. David Levine in 2009 and independently by Martin Vicanek in 2015 [1]. That oscillator is shown in Figure 1.
The time domain equations describing the Figure 1 oscillator are
w(n) =...
Feedback Controllers - Making Hardware with Firmware. Part 5. Some FPGA Aspects.
This part of the on-going series of articles looks at a variety of aspects concerning the FPGA device which provides the high-speed maths capability for the low-latency controller and the arbitrary circuit generator application. In due course a complete specification along with application examples will be maintained on the project website here.- Part 5: Some FPGA Aspects (this part)
- Part 4: Engineering of...
"Neat" Rectangular to Polar Conversion Algorithm
The subject of finding algorithms that estimate the magnitude of a complex number, without having to perform one of those pesky square root operations, has been discussed many times in the past on the comp.dsp newsgroup. That is, given the complex number R + jI in rectangular notation, we want to estimate the magnitude of that number represented by M as:
On August 25th, 2009, Jerry (Mr. Wizard) Avins posted an interesting message on this subject to the comp.dsp newsgroup (Subject: "Re:
A brief look at multipath radio channels
Summary: Discussion of multipath propagation and fading in radio links
Radio channels, their effects on communications links and how to model them are a popular topic on comp.dsp. Unfortunately, for many of us there is little or no opportunity to get any "hands-on" experience with radio-related issues, because the required RF measurement equipment is not that easily available.This article gives a very simple example of a radio link that shows multipath propagation and...
Make Hardware Great Again
By now you're aware of the collective angst in the US about 5G. Why is the US not a leader in 5G ? Could that also happen -- indeed, is it happening -- in AI ? If we lead in other areas, why not 5G ? What makes it so hard ?
This hand-wringing has reached the highest levels in US government. Recently the Wall Street Journal reported on a DoJ promoted plan 1 to help Cisco buy Ericsson or Nokia, to give the US a leg up in 5G. This is not a new plan,...
Feedback Controllers - Making Hardware with Firmware. Part 6. Self-Calibration Related.
This article will consider the engineering of a self-calibration & self-test capability to enable the project hardware to be configured and its basic performance evaluated and verified, ready for the development of the low-latency controller DSP firmware and closed-loop applications. Performance specifications will be documented in due course, on the project website here.
- Part 6: Self-Calibration, Measurements and Signalling (this part)
- Part 5:
Modelling a Noisy Communication Signal in MATLAB for the Analog to Digital Conversion Process
A critical thing to realize while modeling the signal that is going to be digitally processed is the SNR. In a receiver, the noise floor (hence the noise variance and hence its power) are determined by the temperature and the Bandwidth. For a system with a constant bandwidth, relatively constant temperature, the noise power remains relatively constant as well. This implies that the noise variance is a constant.
In MATLAB, the easiest way to create a noisy signal is by using...