DSPRelated.com

Modeling Anti-Alias Filters

Neil Robertson September 26, 2021

Digitizing a signal using an Analog to Digital Converter (ADC) usually requires an anti-alias filter, as shown in Figure 1a.  In this post, we’ll develop models of lowpass Butterworth and Chebyshev anti-alias filters, and compute the time domain and frequency domain output of the ADC for an example input signal.  We’ll also model aliasing of Gaussian noise.  I hope the examples make the textbook explanations of aliasing seem a little more real.  Of course, modeling of...


Sampling bandpass signals

Josef Hoffmann June 26, 20215 comments
Sampling bandpass signals 1.1 Introduction

It is known [1], [3] that bandpass signals can be sampled with a sampling frequency which is lower than the sampling frequency according to the sampling theorem.

Fig. 1 shows an example of how the spectrum of a bandpass signal sampled with $f_s$ (Fig. 1a) arises in the baseband with $−f_s / 2 ≤ f < f_s/2$. The bandpass signal is assumed to have a center frequency $f_c = (f_{max} + f_{min})/2$ and bandwidth $\Delta f...


Simulink-Simulation of SSB demodulation

Josef Hoffmann June 13, 20211 comment
≥≥≥ Simulink-Simulation of SSB demodulation or modulation from the article “Understanding the ‘Phasing Method’ of Single Sideband Demodulation” by Richard Lyons Josef Hoffmann

The article “Understanding the ‘Phasing Method’ of Single Sideband Demodulation” by Richard Lyons is a very good description of this topic. The block representation from the figures are clear and easy to understand. They are predestined for a simulation in Simulink. The simulation can help...


Setting Carrier to Noise Ratio in Simulations

Neil Robertson April 11, 2021

When simulating digital receivers, we often want to check performance with added Gaussian noise.  In this article, I’ll derive the simple equations for the rms noise level needed to produce a desired carrier to noise ratio (CNR or C/N).  I also provide a short Matlab function to generate a noise vector of the desired level for a given signal vector.

Definition of C/N

The Carrier to noise ratio is defined as the ratio of average signal power to noise power for a modulated...


Update to a Narrow Bandpass Filter in Octave or Matlab

Paul Lovell March 29, 2021

Following my earlier blog post (June 2020) featuring a Narrow Bandpass Filter, I’ve had some useful feedback and suggestions. This has inspired me to come up with an updated version, incorporating the following changes compared to the earlier one :

  • Simpler code in Octave or Matlab
  • Float32 precision replaces float64
  • Faster processing by a factor of at least 4 times
  • Easier setup of input parameters
  • Normalized signal output level

A new experimental version in...


Add a Power Marker to a Power Spectral Density (PSD) Plot

Neil Robertson February 7, 2021

Perhaps we should call most Power Spectral Density (PSD) calculations relative PSD, because usually we don’t have to worry about absolute power levels.  However, for cases (e.g., measurements or simulations) where we are concerned with absolute power, it would be nice to be able to display it on a PSD plot.  Unfortunately, you can’t read the power directly from the plot.  For example, the plotted spectral peak of a narrowband signal, such as a sinewave, is lower than the...


Compute Images/Aliases of CIC Interpolators/Decimators

Neil Robertson November 1, 20202 comments

Cascade-Integrator-Comb (CIC) filters are efficient fixed-point interpolators or decimators.  For these filters, all coefficients are equal to 1, and there are no multipliers.  They are typically used when a large change in sample rate is needed.  This article provides two very simple Matlab functions that can be used to compute the spectral images of CIC interpolators and the aliases of CIC decimators.

1.  CIC Interpolators

Figure 1 shows three interpolate-by-M...


Third-Order Distortion of a Digitally-Modulated Signal

Neil Robertson June 9, 2020
Analog designers are always harping about amplifier third-order distortion.  Why?  In this article, we’ll look at why third-order distortion is important, and simulate a QAM signal with third-order distortion.

In the following analysis, we assume that signal phase at the amplifier output is not a function of amplitude.  With this assumption, the output y of a non-ideal amplifier can be written as a power series of the input signal x:

$$y=...


A Narrow Bandpass Filter in Octave or Matlab

Paul Lovell June 1, 20206 comments

The design of a very narrow bandpass FIR filter, coded in either Octave or Matlab, can prove challenging if a computationally-efficient  filter is required. This is especially true if the sampling rate is high relative to the filter's center frequency. The most obvious filter design methods, using either window-based or Remez ( Parks-McClellan ) functions, can easily result in filters with many thousands of taps. 

The filter to be described reduces the computational effort (and thus...


Second Order Discrete-Time System Demonstration

Neil Robertson April 1, 20202 comments

Discrete-time systems are remarkable:  the time response can be computed from mere difference equations, and the coefficients ai, bi of these equations are also the coefficients of H(z).  Here, I try to illustrate this remarkableness by converting a continuous-time second-order system to an approximately equivalent discrete-time system.  With a discrete-time model, we can then easily compute the time response to any input.  But note that the goal here is as much to...


Evaluate Window Functions for the Discrete Fourier Transform

Neil Robertson December 18, 20184 comments

The Discrete Fourier Transform (DFT) operates on a finite length time sequence to compute its spectrum.  For a continuous signal like a sinewave, you need to capture a segment of the signal in order to perform the DFT.  Usually, you also need to apply a window function to the captured signal before taking the DFT [1 - 3].  There are many different window functions and each produces a different approximation of the spectrum.  In this post, we’ll present Matlab code that...


Second Order Discrete-Time System Demonstration

Neil Robertson April 1, 20202 comments

Discrete-time systems are remarkable:  the time response can be computed from mere difference equations, and the coefficients ai, bi of these equations are also the coefficients of H(z).  Here, I try to illustrate this remarkableness by converting a continuous-time second-order system to an approximately equivalent discrete-time system.  With a discrete-time model, we can then easily compute the time response to any input.  But note that the goal here is as much to...


Time Machine, Anyone?

Andor Bariska March 7, 20086 comments

Abstract: Dispersive linear systems with negative group delay have caused much confusion in the past. Some claim that they violate causality, others that they are the cause of superluminal tunneling. Can we really receive messages before they are sent? This article aims at pouring oil in the fire and causing yet more confusion :-).

PDF version of this article.

Introduction 

In this article we reproduce the results of a physical experiment...


The Power Spectrum

Neil Robertson October 8, 2016

Often, when calculating the spectrum of a sampled signal, we are interested in relative powers, and we don’t care about the absolute accuracy of the y axis.  However, when the sampled signal represents an analog signal, we sometimes need an accurate picture of the analog signal’s power in the frequency domain.  This post shows how to calculate an accurate power spectrum.

Parseval’s theorem [1,2] is a property of the Discrete Fourier Transform (DFT) that...


A poor man's Simulink

Markus Nentwig January 24, 20153 comments

Glue between Octave and NGSPICE for discrete- and continuous time cosimulation (download) Keywords: Octave, SPICE, Simulink

Introduction

Many DSP problems have close ties with the analog world. For example, a switched-mode audio power amplifier uses a digital control loop to open and close power transistors driving an analog filter. There are commercial tools for digital-analog cosimulation: Simulink comes to mind, and mainstream EDA vendors support VHDL-AMS or Verilog-A in their...


Design IIR Highpass Filters

Neil Robertson February 3, 20182 comments

This post is the fourth in a series of tutorials on IIR Butterworth filter design.  So far we covered lowpass [1], bandpass [2], and band-reject [3] filters; now we’ll design highpass filters.  The general approach, as before, has six steps:

Find the poles of a lowpass analog prototype filter with Ωc = 1 rad/s. Given the -3 dB frequency of the digital highpass filter, find the corresponding frequency of the analog highpass filter (pre-warping). Transform the...

A Simplified Matlab Function for Power Spectral Density

Neil Robertson March 3, 20204 comments

In an earlier post [1], I showed how to compute power spectral density (PSD) of a discrete-time signal using the Matlab function pwelch [2].  Pwelch is a useful function because it gives the correct output, and it has the option to average multiple Discrete Fourier Transforms (DFTs).  However, a typical function call has five arguments, and it can be hard to remember how to set them all and how they default.

In this post, I create a simplified PSD function by putting a...


TCP/IP interface (Matlab/Octave)

Markus Nentwig June 17, 201210 comments

Communicate with measurement instruments via Ethernet (no-toolbox-Matlab or Octave)

Purpose

Measurement automation is digital signal processing in a wider sense: Getting a digital signal from an analog world usually involves some measurement instruments, for example a spectrum analyzer. Modern instruments, and also many off-the-shelf prototyping boards such as FPGA cards [1] or microcontrollers [2] are able to communicate via Ethernet. Here, I provide some basic mex-functions (compiled C...


IIR Bandpass Filters Using Cascaded Biquads

Neil Robertson April 20, 201911 comments

In an earlier post [1], we implemented lowpass IIR filters using a cascade of second-order IIR filters, or biquads.  

This post provides a Matlab function to do the same for Butterworth bandpass IIR filters.  Compared to conventional implementations, bandpass filters based on biquads are less sensitive to coefficient quantization [2].  This becomes important when designing narrowband filters.

A biquad section block diagram using the Direct Form II structure [3,4] is...


Digital PLL's -- Part 2

Neil Robertson June 15, 20165 comments

In Part 1, we found the time response of a 2nd order PLL with a proportional + integral (lead-lag) loop filter.  Now let’s look at this PLL in the Z-domain [1, 2].  We will find that the response is characterized by a loop natural frequency ωn and damping coefficient ζ. 

Having a Z-domain model of the DPLL will allow us to do three things:

Compute the values of loop filter proportional gain KL and integrator gain KI that give the desired loop natural...