There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle

Neil Robertson October 23, 20179 comments
Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane.  I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way.  I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix. 

This post is available in PDF format for easy...

There and Back Again: Time of Flight Ranging between Two Wireless Nodes

Qasim Chaudhari October 23, 20175 comments

With the growth in the Internet of Things (IoT) products, the number of applications requiring an estimate of range between two wireless nodes in indoor channels is growing very quickly as well. Therefore, localization is becoming a red hot market today and will remain so in the coming years.

One question that is perplexing is that many companies now a days are offering cm level accurate solutions using RF signals. The conventional wireless nodes usually implement synchronization...

Feedback Controllers - Making Hardware with Firmware. Part 4. Engineering of Evaluation Hardware

Steve Maslen October 10, 2017
Following on from the previous abstract descriptions of an arbitrary circuit emulation application for low-latency feedback controllers, we now come to some aspects in the hardware engineering of an evaluation design from concept to first power-up. In due course a complete specification along with  application  examples will be maintained on the project website. 

Online DSP Classes: Why Such a High Dropout Rate?

Rick Lyons October 7, 201718 comments

Last year the IEEE Signal Processing Magazine published a lengthy article describing three university-sponsored online digital signal processing (DSP) courses [1]. The article detailed all the effort the professors expended in creating those courses and the courses' perceived values to students. 

However, one fact that struck me as important, but not thoroughly addressed in the article, was the shocking dropout rate of those online courses. For two of the courses the article's...

Two Bin Exact Frequency Formulas for a Pure Real Tone in a DFT

Cedron Dawg October 4, 20179 comments

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas for the frequency of a real tone in a DFT. This time it is a two bin version. The approach taken is a vector based one similar to the approach used in "Three Bin Exact Frequency Formulas for a Pure Complex Tone in a DFT"[1]. The real valued formula presented in this article actually preceded, and was the basis for the complex three bin...

Errata for the book: 'Understanding Digital Signal Processing'

Rick Lyons October 4, 20179 comments
Errata 3rd Ed. International Version.pdfErrata 3rd Ed. International Version.pdf

This blog post provides, in one place, the errata for each of the many different Editions/Printings of my book Understanding Digital Signal Processing.

If you would like the errata for your copy of the book, merely scroll down and click on the appropriate red line below. For the American versions of the various Editions of the book you'll need to know the "Printing Number" of your copy of the...

Feedback Controllers - Making Hardware with Firmware. Part 3. Sampled Data Aspects

Steve Maslen September 9, 2017
Some Design and Simulation Considerations for Sampled-Data Controllers

This article will continue to look at some aspects of the controllers and electronics needed to create emulated physical circuits with real-world connectivity and will look at the issues that arise in sampled-data controllers compared to continuous-domain controllers. As such, is not intended as an introduction to sampled-data systems.

Finally got a drone!

Stephane Boucher August 28, 20172 comments

As a reader of my blog, you already know that I have been making videos lately and thoroughly enjoying the process.  When I was in Germany early this summer (and went 280 km/h in a porsche!) to produce SEGGER's 25th anniversary video, the company bought a drone so we could get an aerial shot of the party (at about the 1:35 mark in this video).  Since then, I have been obsessing on buying a drone for myself and finally made the move a few weeks ago - I acquired a used DJI...

Feedback Controllers - Making Hardware with Firmware. Part 2. Ideal Model Examples

Steve Maslen August 24, 2017
Developing and Validating Simulation Models

This article will describe models for simulating the systems and controllers for the hardware emulation application described in Part 1 of the series.

Feedback Controllers - Making Hardware with Firmware. Part I. Introduction

Steve Maslen August 22, 2017
Introduction to the topic 

This is the 1st in a series of articles looking at how we can use DSP and Feedback Control Sciences along with some mixed-signal electronics and number-crunching capability (e.g. FPGA), to create arbitrary (within reason) Electrical/Electronic Circuits with real-world connectivity. Of equal importance will be the evaluation of the functionality and performance of a practical design made from modestly-priced state of the art devices.

  • Part 1: 

Multiplying Two Binary Numbers

Rick Lyons March 16, 20117 comments

I just encountered what I think is an interesting technique for multiplying two integer numbers. Perhaps some of the readers here will also find it interesting.

Here's the technique: assume we want to multiply 18 times 17. We start by writing 18 and 17, side-by-side in column A and column B, as shown at the top of Figure 1. Next we divide the 18 at the top of column A by two, retaining only the integer part of the division, and double the 17 at the top of column B. The results of those two...

Design study: 1:64 interpolating pulse shaping FIR

Markus Nentwig December 26, 20115 comments

This article is the documentation to a code snippet that originated from a discussion on comp.dsp.

The task is to design a root-raised cosine filter with a rolloff of a=0.15 that interpolates to 64x the symbol rate at the input.

The code snippet shows a solution that is relatively straightforward to design and achieves reasonably good efficiency using only FIR filters.

Motivation: “simple solutions?”

Wavelets I - From Filter Banks to the Dilation Equation

Vincent Herrmann September 28, 20169 comments

This is the first in what I hope will be a series of posts about wavelets, particularly about the Fast Wavelet Transform (FWT). The FWT is extremely useful in practice and also very interesting from a theoretical point of view. Of course there are already plenty of resources, but I found them tending to be either simple implementation guides that do not touch on the many interesting and sometimes crucial connections. Or they are highly mathematical and definition-heavy, for a...

Differentiating and integrating discrete signals

Allen Downey December 14, 20152 comments

I am back at work on Think DSP, adding a new chapter on differentiation and integration.  In the previous chapter (which you can read here) I present Gaussian smoothing, show how smoothing in the time domain corresponds to a low-pass filter in the frequency domain, and present the Convolution Theorem.

In the current chapter, I start with the first difference operation (diff in Numpy) and show that it corresponds to a high-pass filter in the frequency domain.  I use historical stock...

Sensors Expo - Trip Report & My Best Video Yet!

Stephane Boucher August 3, 20183 comments

This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.  

Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip.  If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...

Coupled-Form 2nd-Order IIR Resonators: A Contradiction Resolved

Rick Lyons November 23, 20122 comments

This blog clarifies how to obtain and interpret the z-domain transfer function of the coupled-form 2nd-order IIR resonator. The coupled-form 2nd-order IIR resonator was developed to overcome a shortcoming in the standard 2nd-order IIR resonator. With that thought in mind, let's take a brief look at a standard 2nd-order IIR resonator.

Standard 2nd-Order IIR Resonator A block diagram of the standard 2nd-order IIR resonator is shown in Figure 1(a). You've probably seen that block diagram many...

Is It True That j is Equal to the Square Root of -1 ?

Rick Lyons September 16, 20137 comments

A few days ago, on the web site, I watched an interesting video concerning complex numbers and the j operator. The video's author claimed that the statement "j is equal to the square root of negative one" is incorrect. What he said was:

He justified his claim by going through the following exercise, starting with:

Based on the algebraic identity:

the author rewrites Eq. (1) as:

If we assume

Eq. (3) can be rewritten...

DSP Related Math: Nice Animated GIFs

Stephane Boucher April 24, 20143 comments

I was browsing the ECE subreddit lately and found that some of the most popular posts over the last few months have been animated GIFs helping understand some mathematical concepts.  I thought there would be some value in aggregating the DSP related gifs on one page.  

The relationship between sin, cos, and right triangles: Constructing a square wave with infinite series (see this...

Design IIR Band-Reject Filters

Neil Robertson January 17, 20182 comments

In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis.  Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters.  Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies.   I’ll discuss the differences between the two approaches later in this...

Demonstrating the Periodic Spectrum of a Sampled Signal Using the DFT

Neil Robertson March 9, 201920 comments

One of the basic DSP principles states that a sampled time signal has a periodic spectrum with period equal to the sample rate.  The derivation of can be found in textbooks [1,2].  You can also demonstrate this principle numerically using the Discrete Fourier Transform (DFT).

The DFT of the sampled signal x(n) is defined as:

$$X(k)=\sum_{n=0}^{N-1}x(n)e^{-j2\pi kn/N} \qquad (1)$$


X(k) = discrete frequency spectrum of time sequence x(n)