Linear Feedback Shift Registers for the Uninitiated, Part XIV: Gold Codes
Last time we looked at some techniques using LFSR output for system identification, making use of the peculiar autocorrelation properties of pseudorandom bit sequences (PRBS) derived from an LFSR.
This time we’re going to jump back to the field of communications, to look at an invention called Gold codes and why a single maximum-length PRBS isn’t enough to save the world using spread-spectrum technology. We have to cover two little side discussions before we can get into Gold...
FFT Interpolation Based on FFT Samples: A Detective Story With a Surprise Ending
This blog presents several interesting things I recently learned regarding the estimation of a spectral value located at a frequency lying between previously computed FFT spectral samples. My curiosity about this FFT interpolation process was triggered by reading a spectrum analysis paper written by three astronomers [1].
My fixation on one equation in that paper led to the creation of this blog.
Background
The notion of FFT interpolation is straightforward to describe. That is, for example,...
ADC Clock Jitter Model, Part 1 – Deterministic Jitter
Analog to digital converters (ADC’s) have several imperfections that affect communications signals, including thermal noise, differential nonlinearity, and sample clock jitter [1, 2]. As shown in Figure 1, the ADC has a sample/hold function that is clocked by a sample clock. Jitter on the sample clock causes the sampling instants to vary from the ideal sample time. This transfers the jitter from the sample clock to the input signal.
In this article, I present a Matlab...
Crowdfunding Articles?
Many of you have the knowledge and talent to write technical articles that would benefit the EE community. What is missing for most of you though, and very understandably so, is the time and motivation to do it.
But what if you could make some money to compensate for your time spent on writing the article(s)? Would some of you find the motivation and make the time?
I am thinking of implementing a system/mechanism that would allow the EE community to...
How precise is my measurement?
Some might argue that measurement is a blend of skepticism and faith. While time constraints might make you lean toward faith, some healthy engineering skepticism should bring you back to statistics. This article reviews some practical statistics that can help you satisfy one common question posed by skeptical engineers: “How precise is my measurement?” As we’ll see, by understanding how to answer it, you gain a degree of control over your measurement time.
An accurate, precise...Embedded World 2018 - More Videos!
After the interview videos last week, this week I am very happy to release two more videos taken at Embedded World 2018 and that I am proud of.
For both videos, I made extensive use of my two new toys, a Zhiyun Crane Gimbal and a Sony a6300 camera.
The use of a gimbal like the Zhiyun makes a big difference in terms of making the footage look much more stable and cinematographic.
As for the Sony camera, it takes fantastic slow-motion footage and...
Phase or Frequency Shifter Using a Hilbert Transformer
In this article, we’ll describe how to use a Hilbert transformer to make a phase shifter or frequency shifter. In either case, the input is a real signal and the output is a real signal. We’ll use some simple Matlab code to simulate these systems. After that, we’ll go into a little more detail on Hilbert transformer theory and design.
Phase ShifterA conceptual diagram of a phase shifter is shown in Figure 1, where the bold lines indicate complex...
Feedback Controllers - Making Hardware with Firmware. Part 8. Control Loop Test-bed
This part in the series will consider the signals, measurements, analyses and configurations for testing high-speed low-latency feedback loops and their controllers. Along with basic test signals, a versatile IFFT signal generation scheme will be discussed and implemented. A simple controller under test will be constructed to demonstrate the analysis principles in preparation for the design and evaluation of specific controllers and closed-loop applications.
Additional design...Embedded World 2018 - The Interviews
Once again this year, I had the chance to go to Embedded World in Nuremberg Germany. And once again this year, I brought my video equipment to try and capture some of the most interesting things at the show.
Something new this year, I asked Jacob Beningo if he would partner with me in doing interviews with a few vendors. I would operate the camera while Jacob would ask the right questions to the vendors to make them talk about the key products/features that...
Phase and Amplitude Calculation for a Pure Complex Tone in a DFT using Multiple Bins
IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by deriving exact formulas to calculate the phase and amplitude of a pure complex tone from several DFT bin values and knowing the frequency. This article is functionally an extension of my prior article "Phase and Amplitude Calculation for a Pure Complex Tone in a DFT"[1] which used only one bin for a complex tone, but it is actually much more similar to my approach for real...
Learn About Transmission Lines Using a Discrete-Time Model
We don’t often think about signal transmission lines, but we use them every day. Familiar examples are coaxial cable, Ethernet cable, and Universal Serial Bus (USB). Like it or not, high-speed clock and signal traces on printed-circuit boards are also transmission lines.
While modeling transmission lines is in general a complex undertaking, it is surprisingly simple to model a lossless, uniform line with resistive terminations by using a discrete-time approach. A...
Computing the Group Delay of a Filter
I just learned a new method (new to me at least) for computing the group delay of digital filters. In the event this process turns out to be interesting to my readers, this blog describes the method. Let's start with a bit of algebra so that you'll know I'm not making all of this up.
Assume we have the N-sample h(n) impulse response of a digital filter, with n being our time-domain index, and that we represent the filter's discrete-time Fourier transform (DTFT), H(ω), in polar form...
Multiplierless Half-band Filters and Hilbert Transformers
This article provides coefficients of multiplierless Finite Impulse Response 7-tap, 11-tap, and 15-tap half-band filters and Hilbert Transformers. Since Hilbert transformer coefficients are simply related to half-band coefficients, multiplierless Hilbert transformers are easily derived from multiplierless half-bands.
Went 280km/h (174mph) in a Porsche Panamera in Germany!
Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos. It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.
Design IIR Band-Reject Filters
In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis. Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters. Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies. I’ll discuss the differences between the two approaches later in this...
Adaptive Beamforming is like Squeezing a Water Balloon
Adaptive beamforming was first developed in the 1960s for radar and sonar applications. The main idea is that signals can be captured using multiple sensors and the sensor outputs can be combined to enhance the signals propagating from specific directions and attenuate (null out) signals from other directions. It has grown immensely in recent years as processors have become faster and cheaper. Today, adaptive beamforming applications include smart speakers (like the Amazon Echo),...
Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...
Launch of Youtube Channel: My First Videos - Embedded World 2017
I went to Embedded World 2017 in Nuremberg with an ambitious plan; I would make video highlights of several exhibits (booths) to be presented to the *Related sites audience. I would try to make the vendors focus their pitch on the essential in order to produce a one to three minutes video per booth.
So far my experience with making videos was limited to family videos, so I knew I had lots of reading to do and lots of Youtube videos and tutorials to watch. Trade shows are...
Demonstrating the Periodic Spectrum of a Sampled Signal Using the DFT
One of the basic DSP principles states that a sampled time signal has a periodic spectrum with period equal to the sample rate. The derivation of can be found in textbooks [1,2]. You can also demonstrate this principle numerically using the Discrete Fourier Transform (DFT).
The DFT of the sampled signal x(n) is defined as:
$$X(k)=\sum_{n=0}^{N-1}x(n)e^{-j2\pi kn/N} \qquad (1)$$
Where
X(k) = discrete frequency spectrum of time sequence x(n)
Filter a Rectangular Pulse with no Ringing
To filter a rectangular pulse without any ringing, there is only one requirement on the filter coefficients: they must all be positive. However, if we want the leading and trailing edge of the pulse to be symmetrical, then the coefficients must be symmetrical. What we are describing is basically a window function.
Consider a rectangular pulse 32 samples long with fs = 1 kHz. Here is the Matlab code to generate the pulse:
N= 64; fs= 1000; % Hz sample...Two jobs
For those of you following closely embeddedrelated and the other related sites, you might have noticed that I have been less active for the last couple of months, and I will use this blog post to explain why. The main reason is that I got myself involved into a project that ended up using a better part of my cpu than I originally thought it would.
edit - video of the event:
I currently have two jobs: one as an electrical/dsp engineer recycled as a web publisher and the other...
Compute Modulation Error Ratio (MER) for QAM
This post defines the Modulation Error Ratio (MER) for QAM signals, and shows how to compute it. As we’ll see, in the absence of impairments other than noise, the MER tracks the signal’s Carrier-to-Noise Ratio (over a limited range). A Matlab script at the end of the PDF version of this post computes MER for a simplified QAM-64 system.
Figure 1 is a simplified block diagram of a QAM system. The transmitter includes a source of QAM symbols, a root-Nyquist...
Demonstrating the Periodic Spectrum of a Sampled Signal Using the DFT
One of the basic DSP principles states that a sampled time signal has a periodic spectrum with period equal to the sample rate. The derivation of can be found in textbooks [1,2]. You can also demonstrate this principle numerically using the Discrete Fourier Transform (DFT).
The DFT of the sampled signal x(n) is defined as:
$$X(k)=\sum_{n=0}^{N-1}x(n)e^{-j2\pi kn/N} \qquad (1)$$
Where
X(k) = discrete frequency spectrum of time sequence x(n)
Frequency Translation by Way of Lowpass FIR Filtering
Some weeks ago a question appeared on the dsp.related Forum regarding the notion of translating a signal down in frequency and lowpass filtering in a single operation [1]. It is possible to implement such a process by embedding a discrete cosine sequence's values within the coefficients of a traditional lowpass FIR filter. I first learned about this process from Reference [2]. Here's the story.
Traditional Frequency Translation Prior To FilteringThink about the process shown in...
Wavelets I - From Filter Banks to the Dilation Equation
This is the first in what I hope will be a series of posts about wavelets, particularly about the Fast Wavelet Transform (FWT). The FWT is extremely useful in practice and also very interesting from a theoretical point of view. Of course there are already plenty of resources, but I found them tending to be either simple implementation guides that do not touch on the many interesting and sometimes crucial connections. Or they are highly mathematical and definition-heavy, for a...
Data Types for Control & DSP
There's a lot of information out there on what data types to use for digital signal processing, but there's also a lot of confusion, so the topic bears repeating.
I recently posted an entry on PID control. In that article I glossed over the data types used by showing "double" in all of my example code. Numerically, this should work for most control problems, but it can be an extravagant use of processor resources. There ought to be a better way to determine what precision you need...
Curse you, iPython Notebook!
First, I think ipython is great. I use it daily and always have an ipython terminal open. But just recently, I was showing off the ipython 0.12 notebook and in the process created a lengthy example while demonstrating the cool features of the ipython notebook. The example included LaTeX equations, plots, etc. Since the notebook session was on something of relevance I decided to clean up the session and use it for the beginning of a report.
The Swiss Army Knife of Digital Networks
This blog describes a general discrete-signal network that appears, in various forms, inside so many DSP applications.
Figure 1 shows how the network's structure has the distinct look of a digital filter—a comb filter followed by a 2nd-order recursive network. However, I do not call this useful network a filter because its capabilities extend far beyond simple filtering. Through a series of examples I've illustrated the fundamental strength of this Swiss Army Knife of digital networks...
Some Observations on Comparing Efficiency in Communication Systems
IntroductionEngineering is usually about managing efficiencies of one sort or another. One of my favorite working definitions of an engineer says, "An engineer is somebody who can do for a nickel what any damn fool can do for a dollar." In that case, the implication is that the cost is one of the characteristics being optimized. But cost isn't always the main efficiency metric, or at least the only one. Consider how a common transportation appliance, the automobile, is optimized...
Design IIR Band-Reject Filters
In this post, I show how to design IIR Butterworth band-reject filters, and provide two Matlab functions for band-reject filter synthesis. Earlier posts covered IIR Butterworth lowpass [1] and bandpass [2] filters. Here, the function br_synth1.m designs band-reject filters based on null frequency and upper -3 dB frequency, while br_synth2.m designs them based on lower and upper -3 dB frequencies. I’ll discuss the differences between the two approaches later in this...