## Python number crunching faster? Part I

Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc. I have been using Python and the common numerical and scientific packages available. Personally, I have found this to be very useful in my work. Lately there has been some chatter on speeding up Python.

From another project I follow, MyHDL, I was introduced to the Python JIT compiler,

## Bank-switched Farrow resampler

Bank-switched Farrow resampler SummaryA modification of the Farrow structure with reduced computational complexity.Compared to a conventional design, the impulse response is broken into a higher number of segments. Interpolation accuracy is achieved with a lower polynomial order, requiring fewer multiplications per output sample at the expense of a higher overall number of coefficients.

Example codeThis code snippet provides a Matlab / Octave implementation.And

## FREE Peer-reviewed IEEE signal processing courses

The IEEE signal processing society is offereing FREE peer reviewed courses, though not many, they are peer reviewed and span differenet topics like; wavelets, speech analysis, and statistical detection.

Enjoy

http://cnx.org/lenses/ieeesps/endorsements?b_start:int=0&-C=

## Discrete Wavelet Transform Filter Bank Implementation (part 2)

Following the previous blog entry: http://www.dsprelated.com/showarticle/115.php

Difference between DWT and DWPTBefore getting to the equivalent filter obtention, I first want to talk about the difference between DWT(Discrete Wavelet Transform) and DWPT (Discrete Wavelet Packet Transform). The latter is used mostly for image processing.

While DWT has a single "high-pass" branch that filters the signal with the h1 filter, the DWPT separates branches symmetricaly: this means that one...

## Matlab Programming Contest

Every 6 months Mathworks hosts an online Matlab programming contest. If you love or hate Matlab check out the contest. The group does a really good job putting together the puzzles. The contest runs for a week and starts today at noon EST (10 Nov 2010).

If you are an experienced Matlab programmer or new to Matlab it is worth checking out. Even if you do not intend on submitting solutions. Also, the problems / puzzles only require the base Matlab...

## Discrete Wavelet Transform Filter Bank Implementation (part 1)

UPDATE: Added graphs and code to explain the frequency division of the branches

The focus of this article is to briefly explain an implementation of this transform and several filter bank forms. Theoretical information about DWT can be found elsewhere.

First of all, a 'quick and dirty' simplified explanation of the differences between DFT and DWT:

The DWT (Discrete Wavelet Transform), simply put, is an operation that receives a signal as an input (a vector of data) and...

## Least-squares magic bullets? The Moore-Penrose Pseudoinverse

Hello,

the topic of this brief article is a tool that can be applied to a variety of problems: The Moore-Penrose Pseudoinverse.While maybe not exactly a magic bullet, it gives us least-squares optimal solutions, and that is under many circumstances the best we can reasonably expect.

I'll demonstrate its use on a short example. More details can be found for example on Wikipedia, or the Matlab documentation...

## Fitting Filters to Measured Amplitude Response Data Using invfreqz in Matlab

This blog post has been moved to the code snippet section and can now be found HERE. Please update your bookmark. Thanks!

## Radio Frequency Distortion Part II: A power spectrum model

SummaryThis article presents a ready-to-use model for nonlinear distortion caused by radio frequenfcy components in wireless receivers and linear transmitters. Compared to the similar model presented in my earlier blog entry, it operates on expectation values of the the power spectrum instead of the signal itself: Use the signal-based model to generate distortion on a signal, and the one from this article to directly obtain the power spectrum much more efficiently.In...

## Accelerating Matlab DSP Code on the GPU

Intrigued by GPUs, I've spent a few days testing out Jacket, an interface that lets you accelerate MATLAB (my favorite, if frustrating language) on NVIDIA GPUs. It's definitely got some caveats. But it was really easy to accelerate my code. And the results were impressive. So I thought I'd put up a few simple DSP-related benchmarks I created and ran on my laptop (a Macbook Air with NVIDIA GeForce 9400M graphics card). The m-files for the two functions I benchmarked (2D FFT and 2D...

## Least-squares magic bullets? The Moore-Penrose Pseudoinverse

Hello,

the topic of this brief article is a tool that can be applied to a variety of problems: The Moore-Penrose Pseudoinverse.While maybe not exactly a magic bullet, it gives us least-squares optimal solutions, and that is under many circumstances the best we can reasonably expect.

I'll demonstrate its use on a short example. More details can be found for example on Wikipedia, or the Matlab documentation...

## A Markov View of the Phase Vocoder Part 2

IntroductionLast post we motivated the idea of viewing the classic phase vocoder as a Markov process. This was due to the fact that the input signal’s features are unknown to the computer, and the phase advancement for the next synthesis frame is entirely dependent on the phase advancement of the current frame. We will dive a bit deeper into this idea, and flesh out some details which we left untouched last week. This includes the effect our discrete Fourier transform has on the...

## Instant CIC

Summary:

A floating point model for a CIC decimator, including the frequency response.

Description:

A CIC filter relies on a peculiarity of its fixed-point implementation: Normal operation involves repeated internal overflows that have no effect to the output signal, as they cancel in the following stage.

One way to put it intuitively is that only the speed (and rate of change) of every little "wheel" in the clockworks carries information, but its absolute position is...

## Update to a Narrow Bandpass Filter in Octave or Matlab

Following my earlier blog post (June 2020) featuring a Narrow Bandpass Filter, I’ve had some useful feedback and suggestions. This has inspired me to come up with an updated version, incorporating the following changes compared to the earlier one :

- Simpler code in Octave or Matlab
- Float32 precision replaces float64
- Faster processing by a factor of at least 4 times
- Easier setup of input parameters
- Normalized signal output level

A new experimental version in...

## Correlation without pre-whitening is often misleading

White LiesCorrelation, as one of the first tools DSP users add to their tool box, can automate locating a known signal within a second (usually larger) signal. The expected result of a correlation is a nice sharp peak at the location of the known signal and few, if any, extraneous peaks.

A little thought will show this to be incorrect: correlating a signal with itself is only guaranteed to give a sharp peak if the signal's samples are uncorrelated --- for example if the signal is composed...

## Modelling a Noisy Communication Signal in MATLAB for the Analog to Digital Conversion Process

A critical thing to realize while modeling the signal that is going to be digitally processed is the SNR. In a receiver, the noise floor (hence the noise variance and hence its power) are determined by the temperature and the Bandwidth. For a system with a constant bandwidth, relatively constant temperature, the noise power remains relatively constant as well. This implies that the noise variance is a constant.

In MATLAB, the easiest way to create a noisy signal is by using...

## There's No End to It -- Matlab Code Plots Frequency Response above the Unit Circle

Reference [1] has some 3D plots of frequency response magnitude above the unit circle in the Z-plane. I liked them enough that I wrote a Matlab function to plot the response of any digital filter this way. I’m not sure how useful these plots are, but they’re fun to look at. The Matlab code is listed in the Appendix.This post is available in PDF format for easy...

## Python number crunching faster? Part I

Everyone has their favorite computing platform, regardless if it is Matlab, Octave, Scilab, Mathematica, Mathcad, etc. I have been using Python and the common numerical and scientific packages available. Personally, I have found this to be very useful in my work. Lately there has been some chatter on speeding up Python.

From another project I follow, MyHDL, I was introduced to the Python JIT compiler,

## 'z' as in 'Zorro': Frequency Masking FIR

An efficient way to implement FIR filters. Matlab / Octave example included. Keywords: Frequency masking FIR filter implementation

IntroductionAn "upsampled" FIR filter uses multiple-sample delays between the taps, compared to the unity delays in a conventional FIR filter. The resulting frequency response has steeper edges, but contains periodic images along the frequency axis (Fig. 1). Due to the latter, it is typically not too useful on its own.

Figure 1: Conventional and 'upsampled'...## Accelerating Matlab DSP Code on the GPU

Intrigued by GPUs, I've spent a few days testing out Jacket, an interface that lets you accelerate MATLAB (my favorite, if frustrating language) on NVIDIA GPUs. It's definitely got some caveats. But it was really easy to accelerate my code. And the results were impressive. So I thought I'd put up a few simple DSP-related benchmarks I created and ran on my laptop (a Macbook Air with NVIDIA GeForce 9400M graphics card). The m-files for the two functions I benchmarked (2D FFT and 2D...

## Add a Power Marker to a Power Spectral Density (PSD) Plot

Perhaps we should call most Power Spectral Density (PSD) calculations relative PSD, because usually we don’t have to worry about absolute power levels. However, for cases (e.g., measurements or simulations) where we are concerned with absolute power, it would be nice to be able to display it on a PSD plot. Unfortunately, you can’t read the power directly from the plot. For example, the plotted spectral peak of a narrowband signal, such as a sinewave, is lower than the...

## Interpolator Design: Get the Stopbands Right

In this article, I present a simple approach for designing interpolators that takes the guesswork out of determining the stopbands.

## Add the Hilbert Transformer to Your DSP Toolkit, Part 2

In this part, I’ll show how to design a Hilbert Transformer using the coefficients of a half-band filter as a starting point, which turns out to be remarkably simple. I’ll also show how a half-band filter can be synthesized using the Matlab function firpm, which employs the Parks-McClellan algorithm.

A half-band filter is a type of lowpass, even-symmetric FIR filter having an odd number of taps, with the even-numbered taps (except for the main tap) equal to zero. This...

## Determination of the transfer function of passive networks with MATLAB Functions

With MATLAB functions, the transfer function of passive networks can be determined relatively easily. The method is explained using the example of a passive low-pass filter of the sixth order, which is shown in Fig.1

Fig.1 Passive low-pass filter of the sixth order

If one tried, as would be logical, to calculate the transfer function starting from the input, it would be quite complicated. On the other hand, if you start from the output, the determination of this function is simple...

## The Phase Vocoder Transform

1 IntroductionI would like to look at the phase vocoder in a fairly ``abstract'' way today. The purpose of this is to discuss a method for measuring the quality of various phase vocoder algorithms, and building off a proposed measure used in [2]. There will be a bit of time spent in the domain of continuous mathematics, thus defining a phase vocoder function or map rather than an algorithm. We will be using geometric visualizations when possible while pointing out certain group theory...

## DAC Zero-Order Hold Models

This article provides two simple time-domain models of a DAC’s zero-order hold. These models will allow us to find time and frequency domain approximations of DAC outputs, and simulate analog filtering of those outputs. Developing the models is also a good way to learn about the DAC ZOH function.

## Fitting Filters to Measured Amplitude Response Data Using invfreqz in Matlab

This blog post has been moved to the code snippet section and can now be found HERE. Please update your bookmark. Thanks!

## Model a Sigma-Delta DAC Plus RC Filter

Sigma-delta digital-to-analog converters (SD DAC’s) are often used for discrete-time signals with sample rate much higher than their bandwidth. For the simplest case, the DAC output is a single bit, so the only interface hardware required is a standard digital output buffer. Because of the high sample rate relative to signal bandwidth, a very simple DAC reconstruction filter suffices, often just a one-pole RC lowpass. In this article, I present a simple Matlab function that models the combination of a basic SD DAC and one-pole RC filter. This model allows easy evaluation of the overall performance for a given input signal and choice of sample rate, R, and C.

## Matlab Programming Contest

Every 6 months Mathworks hosts an online Matlab programming contest. If you love or hate Matlab check out the contest. The group does a really good job putting together the puzzles. The contest runs for a week and starts today at noon EST (10 Nov 2010).

If you are an experienced Matlab programmer or new to Matlab it is worth checking out. Even if you do not intend on submitting solutions. Also, the problems / puzzles only require the base Matlab...

## Simple Discrete-Time Modeling of Lossy LC Filters

There are many software applications that allow modeling LC filters in the frequency domain. But sometimes it is useful to have a time domain model, such as when you need to analyze a mixed analog and DSP system. For example, the system in Figure 1 includes an LC filter as well as a DSP portion. The LC filter could be an anti-alias filter, a channel filter, or some other LC network. For a design using undersampling, the filter would be bandpass [1]. By modeling...