DSPRelated.com

Algebra's Laws of Powers and Roots: Handle With Care

Rick Lyons September 25, 20233 comments

Recently, for entertainment, I tried to solve a puzzling algebra problem featured on YouTube [1]. In due course I learned that algebra’s $$(a^x)^y=a^{xy}\qquad\qquad\qquad\qquad\qquad(1)$$

Law of Powers identity is not always valid (not always true) if variable a is real and exponents x and y are complex-valued.

The fact that Eq. (1) can’t reliably be used with complex x and y exponents surprised me. And then I thought, “Humm, …what other of algebra’s identities may also...


Access to 50+ Sessions From the DSP Online Conference

Stephane Boucher September 21, 2023

In case you forget or didn't already know, registering for the 2023 DSP Online Conference automatically gives you 10 months of unlimited access to all sessions from previous editions of the conference.  So for the price of an engineering book, you not only get access to the upcoming 2023 DSP Online Conference but also to hours upon hours of on-demand DSP gold from some of the best experts in the field.

The value you get for your small investment is simply huge. Many of the...


Interpolator Design: Get the Stopbands Right

Neil Robertson July 6, 20236 comments

In this article, I present a simple approach for designing interpolators that takes the guesswork out of determining the stopbands.


A Fast Guaranteed-Stable Sliding DFT Algorithm

Rick Lyons June 15, 202320 comments

This blog presents a most computationally-efficient guaranteed-stable real-time sliding discrete Fourier transform (SDFT) algorithm. The phrase “real-time” means the network computes one spectral output sample, equal to a single-bin output of an N‑point discrete Fourier transform (DFT), for each input signal sample.

Proposed Guaranteed Stable SDFT

My proposed guaranteed stable SDFT, whose development is given in [1], is shown in Figure 1(a). The output sequence Xk(n) is an N-point...


Return of the Delta-Sigma Modulators, Part 1: Modulation

Jason Sachs May 28, 2023

About a decade ago, I wrote two articles:

Each of these are about delta-sigma modulation, but they’re short and sweet, and not very in-depth. And the 2013 article was really more about analog-to-digital converters. So we’re going to revisit the subject, this time with a lot more technical depth — in fact, I’ve had to split this...


Sonos, Shut Up and Take My Money! - Is Spatial Audio Finally Here?

Stephane Boucher May 24, 20231 comment

Although I generally agree that money can't buy happiness, I recently made a purchase that has brought me countless hours of pure joy. In this blog post, I want to share my excitement with the DSPRelated community, because I know there are many audio and music enthusiasts here, and also because I suspect there is a lot of DSP magic behind this product. And I would love to hear your opinions and experiences if you have also bought or tried the Sonos ERA 300 wireless speaker, or any other...


Simple Discrete-Time Modeling of Lossy LC Filters

Neil Robertson April 19, 2023

There are many software applications that allow modeling LC filters in the frequency domain.  But sometimes it is useful to have a time domain model, such as when you need to analyze a mixed analog and DSP system.  For example, the system in Figure 1 includes an LC filter as well as a DSP portion.  The LC filter could be an anti-alias filter, a channel filter, or some other LC network.  For a design using undersampling, the filter would be bandpass [1].  By modeling...


The Discrete Fourier Transform as a Frequency Response

Neil Robertson February 4, 20236 comments

The discrete frequency response H(k) of a Finite Impulse Response (FIR) filter is the Discrete Fourier Transform (DFT) of its impulse response h(n) [1].  So, if we can find H(k) by whatever method, it should be identical to the DFT of h(n).  In this article, we’ll find H(k) by using complex exponentials, and we’ll see that it is indeed identical to the DFT of h(n).

Consider the four-tap FIR filter in Figure 1, where each block labeled Ts represents a delay of one...


Simple Concepts Explained: Fixed-Point

Leandro Stefanazzi January 24, 202310 comments
Introduction

Most signal processing intensive applications on FPGA are still implemented relying on integer or fixed-point arithmetic. It is not easy to find the key ideas on quantization, fixed-point and integer arithmetic. In a series of articles, I aim to clarify some concepts and add examples on how things are done in real life. The ideas covered are the result of my professional experience and hands-on projects.

In this article I will present the most fundamental question you...


Overview of my Articles

Cedron Dawg December 10, 2022
Introduction

This article is a summary of all the articles I've written here at DspRelated. The main focus has always been an increased understanding of the Discrete Fourier Transform (DFT). The references are grouped by topic and ordered in a reasonable reading order. All the articles are meant to teach math, or give examples of math, in context within a specific application. Many of the articles also have sample programs which demonstrate the equations derived in the articles. My...


A Fixed-Point Introduction by Example

Christopher Felton April 25, 201122 comments
Introduction

The finite-word representation of fractional numbers is known as fixed-point.  Fixed-point is an interpretation of a 2's compliment number usually signed but not limited to sign representation.  It extends our finite-word length from a finite set of integers to a finite set of rational real numbers [1].  A fixed-point representation of a number consists of integer and fractional components.  The bit length is defined...


A Quadrature Signals Tutorial: Complex, But Not Complicated

Rick Lyons April 12, 201365 comments

Introduction Quadrature signals are based on the notion of complex numbers and perhaps no other topic causes more heartache for newcomers to DSP than these numbers and their strange terminology of j operator, complex, imaginary, real, and orthogonal. If you're a little unsure of the physical meaning of complex numbers and the j = √-1 operator, don't feel bad because you're in good company. Why even Karl Gauss, one the world's greatest mathematicians, called the j-operator the "shadow of...


Understanding and Preventing Overflow (I Had Too Much to Add Last Night)

Jason Sachs December 4, 2013

Happy Thanksgiving! Maybe the memory of eating too much turkey is fresh in your mind. If so, this would be a good time to talk about overflow.

In the world of floating-point arithmetic, overflow is possible but not particularly common. You can get it when numbers become too large; IEEE double-precision floating-point numbers support a range of just under 21024, and if you go beyond that you have problems:

for k in [10, 100, 1000, 1020, 1023, 1023.9, 1023.9999, 1024]: try: ...

Adventures in Signal Processing with Python

Jason Sachs June 23, 201311 comments

Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being a good neighbor to The MathWorks. While I don’t make it a secret of my dislike of many aspects of MATLAB — which I mention later in this article — I do hope they can improve their software and reduce the price. Please note this...


Sum of Two Equal-Frequency Sinusoids

Rick Lyons September 4, 20147 comments

Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:

Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...


Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter

Jason Sachs April 27, 201516 comments

Other articles in this series:

I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...


Understanding the 'Phasing Method' of Single Sideband Demodulation

Rick Lyons August 8, 201230 comments

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

  • synchronous detection,
  • phasing method,
  • Weaver method, and
  • filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...


Minimum Shift Keying (MSK) - A Tutorial

Qasim Chaudhari January 25, 201717 comments

Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.

MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...


An Interesting Fourier Transform - 1/f Noise

Steve Smith November 23, 200724 comments

Power law functions are common in science and engineering. A surprising property is that the Fourier transform of a power law is also a power law. But this is only the start- there are many interesting features that soon become apparent. This may even be the key to solving an 80-year mystery in physics.

It starts with the following Fourier transform:

The general form is tα ↔ ω-(α+1), where α is a constant. For example, t2 ↔...


Computing FFT Twiddle Factors

Rick Lyons August 8, 201019 comments

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...