## Sensors Expo - Trip Report & My Best Video Yet!

This was my first time at Sensors Expo and my second time in Silicon Valley and I must say I had a great time.

Before I share with you what I find to be, by far, my best 'highlights' video yet for a conference/trade show, let me try to entertain you with a few anecdotes from this trip. If you are not interested by my stories or maybe don't have the extra minutes needed to read them, please feel free to skip to the end of this blog post to watch the...

## Design a DAC sinx/x Corrector

This post provides a Matlab function that designs linear-phase FIR sinx/x correctors. It includes a table of fixed-point sinx/x corrector coefficients for different DAC frequency ranges.

A sinx/x corrector is a digital (or analog) filter used to compensate for the sinx/x roll-off inherent in the digital to analog conversion process. In DSP math, we treat the digital signal applied to the DAC is a sequence of impulses. These are converted by the DAC into contiguous pulses...

## Off Topic: Refraction in a Varying Medium

IntroductionThis article is another digression from a better understanding of the DFT. In fact, it is a digression from DSP altogether. However, since many of the readers here are Electrical Engineers and other folks who are very scientifically minded, I hope this article is of interest. A differential vector equation is derived for the trajectory of a point particle in a field of varying index of refraction. This applies to light, of course, but since it is a purely theoretical...

## Feedback Controllers - Making Hardware with Firmware. Part 9. Closing the low-latency loop

It's time to put together the DSP and feedback control sciences, the evaluation electronics, the Intel Cyclone floating-point FPGA algorithms and the built-in control loop test-bed and evaluate some example designs. We will be counting the nanoseconds and looking for textbook performance in the creation of emulated hardware circuits. Along the way, there is a printed circuit board (PCB) issue to solve using DSP.

Fig 1. The evaluation platform

Additional design...

## Project update-2 : Digital Filter Blocks in MyHDL and their integration in pyFDA

This is an exciting update in the sense that it demonstrates a working model of one important aspect of the project: The integration or ‘glue’ between and Pyfda and MyHDL filter blocks.

So, why do we need to integrate and how do we go about it?

As discussed in earlier posts, the idea is to provide a workflow in Pyfda that automates the process of Implementing a fixpoint filter in VHDL / Verilog, and verify the correct performance in a digital design environment. MyHDL based...

## Project update-1 : Digital Filter Blocks in MyHDL and their integration in pyFDA

This blog post presents the progress made up to week 5 in my GSoC project “Digital Filter blocks and their integration in PyFDA”. Progress was made in two areas of the project.

This post will primarily discuss filter block implementation. The interface will be discussed in a later post once further progress is made.

Direct form-I FIR filterThe equation specifies the direct form I...

## Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction

Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.

This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...

## Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction

Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.

This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.

Ernie, You Have a Banana in Your EarI have had a really really tough time writing this article. I like the...

## Who else is going to Sensors Expo in San Jose? Looking for roommate(s)!

This will be my first time attending this show and I must say that I am excited. I am bringing with me my cameras and other video equipment with the intention to capture as much footage as possible and produce a (hopefully) fun to watch 'highlights' video. I will also try to film as many demos as possible and share them with you.

I enjoy going to shows like this one as it gives me the opportunity to get out of my home-office (from where I manage and run the *Related sites) and actually...

## Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock

Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock that is not related to the system clocks of your ASIC or FPGA. This situation is shown in Figure 1. Assuming your system has an analog-to-digital converter (ADC) available, you can sync to the external clock using the scheme shown in Figure 2. This time-domain PLL model is similar to the one presented in Part 1 of this series on digital PLL’s [1]. In that PLL, we...

## An Interesting Fourier Transform - 1/f Noise

Power law functions are common in science and engineering. A surprising property is that the Fourier transform of a power law is also a power law. But this is only the start- there are many interesting features that soon become apparent. This may even be the key to solving an 80-year mystery in physics.

It starts with the following Fourier transform:

The general form is tα ↔ ω-(α+1), where α is a constant. For example, t2 ↔...

## Sum of Two Equal-Frequency Sinusoids

Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:

Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...

## Design IIR Bandpass Filters

In this post, I present a method to design Butterworth IIR bandpass filters. My previous post [1] covered lowpass IIR filter design, and provided a Matlab function to design them. Here, we’ll do the same thing for IIR bandpass filters, with a Matlab function bp_synth.m. Here is an example function call for a bandpass filter based on a 3rd order lowpass prototype:

N= 3; % order of prototype LPF fcenter= 22.5; % Hz center frequency, Hz bw= 5; ...## Python scipy.signal IIR Filtering: An Example

IntroductionIn the last posts I reviewed how to use the Python scipy.signal package to design digital infinite impulse response (IIR) filters, specifically, using the iirdesign function (IIR design I and IIR design II ). In this post I am going to conclude the IIR filter design review with an example.

Previous posts:

## Design IIR Filters Using Cascaded Biquads

This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads. We’ll derive how to calculate the coefficients of the biquads and do some examples using a Matlab function biquad_synth provided in the Appendix. Although we’ll be designing Butterworth filters, the approach applies to any all-pole lowpass filter (Chebyshev, Bessel, etc). As we’ll see, the cascaded-biquad design is less sensitive to coefficient...## Simplest Calculation of Half-band Filter Coefficients

Half-band filters are lowpass FIR filters with cut-off frequency of one-quarter of sampling frequency fs and odd symmetry about fs/4 [1]*. And it so happens that almost half of the coefficients are zero. The passband and stopband bandwiths are equal, making these filters useful for decimation-by-2 and interpolation-by-2. Since the zero coefficients make them computationally efficient, these filters are ubiquitous in DSP systems.

Here we will compute half-band...

## Handling Spectral Inversion in Baseband Processing

The problem of "spectral inversion" comes up fairly frequently in the context of signal processing for communication systems. In short, "spectral inversion" is the reversal of the orientation of the signal bandwidth with respect to the carrier frequency. Rick Lyons' article on "Spectral Flipping" at http://www.dsprelated.com/showarticle/37.php discusses methods of handling the inversion (as shown in Figure 1a and 1b) at the signal center frequency. Since most communication systems process...

## A Beginner's Guide to OFDM

In the recent past, high data rate wireless communications is often considered synonymous to an Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is a special case of multi-carrier communication as opposed to a conventional single-carrier system.

The concepts on which OFDM is based are so simple that almost everyone in the wireless community is a technical expert in this subject. However, I have always felt an absence of a really simple guide on how OFDM works which can...

## The DFT Magnitude of a Real-valued Cosine Sequence

This blog may seem a bit trivial to some readers here but, then again, it might be of some value to DSP beginners. It presents a mathematical proof of what is the magnitude of an N-point discrete Fourier transform (DFT) when the DFT's input is a real-valued sinusoidal sequence.

To be specific, if we perform an N-point DFT on N real-valued time-domain samples of a discrete cosine wave, having exactly integer k cycles over N time samples, the peak magnitude of the cosine wave's...

## Understanding and Relating E_{b}/N_{o}, SNR, and other Power Efficiency Metrics

Introduction

Evaluating the performance of communication systems, and wireless systems in particular, usually involves quantifying some performance metric as a function of Signal-to-Noise-Ratio (SNR) or some similar measurement. Many systems require performance evaluation in multipath channels, some in Doppler conditions and other impairments related to mobility. Some have interference metrics to measure against, but nearly all include noise power as an impairment. Not all systems are...

## Understanding and Preventing Overflow (I Had Too Much to Add Last Night)

Happy Thanksgiving! Maybe the memory of eating too much turkey is fresh in your mind. If so, this would be a good time to talk about overflow.

In the world of floating-point arithmetic, overflow is possible but not particularly common. You can get it when numbers become too large; IEEE double-precision floating-point numbers support a range of just under 21024, and if you go beyond that you have problems:

for k in [10, 100, 1000, 1020, 1023, 1023.9, 1023.9999, 1024]: try: ...## Digital Envelope Detection: The Good, the Bad, and the Ugly

Recently I've been thinking about the process of envelope detection. Tutorial information on this topic is readily available but that information is spread out over a number of DSP textbooks and many Internet web sites. The purpose of this blog is to summarize various digital envelope detection methods in one place.

Here I focus on envelope detection as it is applied to an amplitude-fluctuating sinusoidal signal where the positive-amplitude fluctuations (the sinusoid's envelope)...

## Python scipy.signal IIR Filter Design

IntroductionThe following is an introduction on how to design an infinite impulse response (IIR) filters using the Python scipy.signal package. This post, mainly, covers how to use the scipy.signal package and is not a thorough introduction to IIR filter design. For complete coverage of IIR filter design and structure see one of the references.

Filter SpecificationBefore providing some examples lets review the specifications for a filter design. A filter...

## The DFT Magnitude of a Real-valued Cosine Sequence

This blog may seem a bit trivial to some readers here but, then again, it might be of some value to DSP beginners. It presents a mathematical proof of what is the magnitude of an N-point discrete Fourier transform (DFT) when the DFT's input is a real-valued sinusoidal sequence.

To be specific, if we perform an N-point DFT on N real-valued time-domain samples of a discrete cosine wave, having exactly integer k cycles over N time samples, the peak magnitude of the cosine wave's...

## Delay estimation by FFT

Given x=sig(t) and y=ref(t), returns [c, ref(t+delta), delta)] = fitSignal(y, x);:Estimates and corrects delay and scaling factor between two signals Code snippetThis article relates to the Matlab / Octave code snippet: Delay estimation with subsample resolution It explains the algorithm and the design decisions behind it.

IntroductionThere are many DSP-related problems, where an unknown timing between two signals needs to be determined and corrected, for example, radar, sonar,...

## Four Ways to Compute an Inverse FFT Using the Forward FFT Algorithm

If you need to compute inverse fast Fourier transforms (inverse FFTs) but you only have forward FFT software (or forward FFT FPGA cores) available to you, below are four ways to solve your problem.

Preliminaries To define what we're thinking about here, an N-point forward FFT and an N-point inverse FFT are described by:

$$ Forward \ FFT \rightarrow X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N} \tag{1} $$ $$ Inverse \ FFT \rightarrow x(n) = {1 \over N} \sum_{m=0}^{N-1}...## Sum of Two Equal-Frequency Sinusoids

Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:

Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...

## Embedded Toolbox: Programmer's Calculator

Like any craftsman, I have accumulated quite a few tools during my embedded software development career. Some of them proved to me more useful than others. And these generally useful tools ended up in my Embedded Toolbox. In this blog, I'd like to share some of my tools with you. Today, I'd like to start with my cross-platform Programmer's Calculator called QCalc.

I'm sure that you already have your favorite calculator online or on your smartphone. But can your calculator accept...

## Polyphase Filters and Filterbanks

ALONG CAME POLY

Polyphase filtering is a computationally efficient structure for applying resampling and filtering to a signal. Most digital filters can be applied in a polyphase format, and it is also possible to create efficient resampling filterbanks using the same theories.

This post will walk through a reference implementation of both the downsampling polyphase filter and a downsampling polyphase filterbank using scipy, numpy, matplotlib, and python. It should also highlight some of...

## Music/Audio Signal Processing

Greetings,

This is my blog from the point of view of a music/audio DSP research engineer / educator. It is informal and largely nontechnical because nearly everything I have to say about signal processing is (or will be) somewhere in my four-book series: Mathematics of DFT with Audio Applications, Introduction to Digital Filters, Physical Audio Signal Processing and

## Back from ESC Boston

NOT going to ESC Boston would have allowed me to stay home, in my comfort zone.

NOT going to ESC Boston would have saved me from driving in the absolutely horrible & stressful Boston traffic1.

NOT going to ESC Boston would have saved me from having to go through a full search & questioning session at the Canada Customs on my return2.

2017/06/06 update: Videos are now up!So two days...

## Launch of Youtube Channel: My First Videos - Embedded World 2017

I went to Embedded World 2017 in Nuremberg with an ambitious plan; I would make video highlights of several exhibits (booths) to be presented to the *Related sites audience. I would try to make the vendors focus their pitch on the essential in order to produce a one to three minutes video per booth.

So far my experience with making videos was limited to family videos, so I knew I had lots of reading to do and lots of Youtube videos and tutorials to watch. Trade shows are...

## New Comments System (please help me test it)

I thought it would take me a day or two to implement, it took almost two weeks...

But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.

Which means that:

- You can easily add images, either by drag and drop or through the 'Insert Image' button
- You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
- You can add code snippets and they will be highlighted with highlights.js
- You can edit...

## 3 Good News

Good News #1Last week, I announced a new and ambitious reward program that will be funded by the new Vendors Directory.

This week, I am happy to announce that we have our firsts two sponsors! Quantum Leaps & Abelon Systems have agreed to pay the sponsorship fee to be listed in the new Vendors Directory. Because of their support, there is now some money in the reward pool ($1,000) and enough to pay for the firsts 500 'beers' awarded. Please...

## Go Big or Go Home - Generating $500,000 for Contributors

In a Nutshell- A new Vendors Directory has been created
- Vendors will be invited to pay a sponsorship fee to be listed in the directory
- 100% of the basic sponsorship fee will be distributed to the *Related Sites community through a novel reward system
- The goal is for the directory to eventually generate - drum roll please - $500,000 on a yearly basis for contributing members on the *Related Sites
- Members will choose how the reward money gets distributed between...

## The New Forum is LIVE!

After months of hard word, I am very excited to introduce to you the new forum interface.

Here are the key features:

1- Easily add images to a post by drag & dropping the images in the editor

2- Easily attach files to a post by drag & dropping the files in the editor

3- Add latex equations to a post and they will be rendered with Mathjax (tutorial)

4- Add a code snippet and surround the code with

## Helping New Bloggers to Break the Ice: A New Ipad Pro for the Author with the Best Article!

Breaking the ice can be tough. Over the years, many individuals have asked to be given access to the blogging interface only to never post an article. Maybe they underestimated the time it takes to write a decent article, or maybe they got cold feet. I don't blame or judge them at all - how many times in my life have I had the intention to do something but didn't follow through? Once, maybe twice 😉 (don't worry if you don't...

## Welcoming MANY New Bloggers!

The response to the latest call for bloggers has been amazing and I am very grateful.

In this post I present to you the individuals who, so far (I am still receiving applications at an impressive rate and will update this page as more bloggers are added), have been given access to the blogging interface. I am very pleased with the positive response and I think the near future will see the publication of many great articles, given the quality of the...

## Recruiting New Bloggers!

Previous calls for bloggers have been very successful in recruiting some great communicators - Rick Lyons, Jason Sachs, Victor Yurkovsky, Mike Silva, Markus Nentwig, Gene Breniman, Stephen Friederichs,

## Premium Forum?

Chances are that by now, you have had a chance to browse the new design of the *related site that I published several weeks ago. I have been working for several months on this and I must admit that I am very happy with the results. This new design will serve as a base for many new exciting developments. I would love to hear your comments/suggestions if you have any, please use the comments system at the bottom of this page.

First on my list would be to build and launch a new forum...