DSPRelated.com

Add the Hilbert Transformer to Your DSP Toolkit, Part 1

Neil Robertson November 22, 20224 comments

In some previous articles, I made use of the Hilbert transformer, but did not explain its theory in any detail.  In this article, I’ll dig a little deeper into how the Hilbert Transformer works.  Understanding the Hilbert Transformer involves a modest amount of mathematics, but the payoff in useful applications is worth it.

As we’ll learn, a Hilbert Transformer is just a particular type of Finite Impulse Response (FIR) filter.  In Part 1 of this article, I’ll...


Candan's Tweaks of Jacobsen's Frequency Approximation

Cedron Dawg November 11, 2022
Introduction

This is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by explaining how a tweak to a well known frequency approximation formula makes it better, and another tweak makes it exact. The first tweak is shown to be the first of a pattern and a novel approximation formula is made from the second. It only requires a few extra calculations beyond the original approximation to come up with an approximation suitable for most...


A Recipe for a Basic Trigonometry Table

Cedron Dawg October 4, 2022
Introduction

This is an article that is give a better understanding to the Discrete Fourier Transform (DFT) by showing how to build a Sine and Cosine table from scratch. Along the way a recursive method is developed as a tone generator for a pure tone complex signal with an amplitude of one. Then a simpler multiplicative one. Each with drift correction factors. By setting the initial values to zero and one degrees and letting it run to build 45 values, the entire set of values needed...


A New Contender in the Quadrature Oscillator Race

Rick Lyons September 24, 20226 comments

This blog advocates a relatively new and interesting quadrature oscillator developed by A. David Levine in 2009 and independently by Martin Vicanek in 2015 [1]. That oscillator is shown in Figure 1.

The time domain equations describing the Figure 1 oscillator are

     w(n) =...


A New Related Site!

Stephane Boucher September 22, 20222 comments

We are delighted to announce the launch of the very first new Related site in 15 years!  The new site will be dedicated to the trendy and quickly growing field of Machine Learning and will be called - drum roll please - MLRelated.com.

We think MLRelated fits perfectly well within the “Related” family, with:

  • the fast growth of TinyML, which is a topic of great interest to the EmbeddedRelated community
  • the use of Machine/Deep Learning in Signal Processing applications, which is of...

Filtering Noise: The Basics (Part 1)

Aditya Dua September 17, 20223 comments
Introduction

Finding signals in the presence of noise is one of the fundamental quests of the discipline of signal processing. Noise is inherently random by nature, so a probability oriented approach is needed to develop a mathematical framework for filtering (i.e. removing/suppressing) noise. This framework or discipline, formally referred to as stochastic signal processing, is often taught in graduate level engineering programs and is covered from different perspectives in excellent...


Book Recommendation "What is Mathematics?"

Neil Robertson June 20, 20227 comments

What is Mathematics is a classic, lucidly written survey of mathematics by Courant and Robbins.  The first edition was published in 1941!  I have only read a portion of it, mainly the chapter on calculus.  One page of Courant is worth about five pages of my old college calculus textbook, and it’s a lot more fun to read.

The reader of this book should already be familiar with algebra and trigonometry.  For engineers, some worthwhile sections of the book are:


Evaluate Noise Performance of Discrete-Time Differentiators

Neil Robertson March 28, 20228 comments

When it comes to noise, all differentiators are not created equal.  Figure 1 shows the magnitude response of two differentiators.  They both have a useful bandwidth of a little less than π/8 radians (based on maximum magnitude response error of 2%).  Suppose we apply a signal with Gaussian noise to each of these differentiators.  The sinusoidal signal with noise is shown in the top of Figure 2.  Signal frequency is π/12.5 radians.  The output of the so-called...


Off-Topic: A Fluidic Model of the Universe

Cedron Dawg February 2, 20226 comments
Introduction

This article is a followup to my previous article "Off Topic: Refraction in a Varying Medium"[1]. Many of the concepts should be quite familiar and of interest to the readership of this site. In the "Speculations" section of my previous article, I mention the goal of finding a similar differential equation as (18) of [1] for light traveling in gravity. It turns out it is the right equation, but a wrong understanding. As a consequence of trying to solve this puzzle, a new...


Learn About Transmission Lines Using a Discrete-Time Model

Neil Robertson January 12, 2022

We don’t often think about signal transmission lines, but we use them every day.  Familiar examples are coaxial cable, Ethernet cable, and Universal Serial Bus (USB).  Like it or not, high-speed clock and signal traces on printed-circuit boards are also transmission lines.

While modeling transmission lines is in general a complex undertaking, it is surprisingly simple to model a lossless, uniform line with resistive terminations by using a discrete-time approach.  A...


The Exponential Nature of the Complex Unit Circle

Cedron Dawg March 10, 20155 comments
Introduction

This is an article to hopefully give an understanding to Euler's magnificent equation:

$$ e^{i\theta} = cos( \theta ) + i \cdot sin( \theta ) $$

This equation is usually proved using the Taylor series expansion for the given functions, but this approach fails to give an understanding to the equation and the ramification for the behavior of complex numbers. Instead an intuitive approach is taken that culminates in a graphical understanding of the equation.

Complex...

Free DSP Books on the Internet

Rick Lyons February 23, 200824 comments

While surfing the "net" I have occasionally encountered signal processing books whose chapters could be downloaded to my computer. I started keeping a list of those books and, over the years, that list has grown to over forty books. Perhaps the list will be of interest to you.

Please know, all of the listed books are copyrighted. The copyright holders have graciously provided their books free of charge for downloading for individual use, but multiple copies must not be made or printed. As...


Polyphase Filters and Filterbanks

Kyle March 19, 201310 comments

ALONG CAME POLY

Polyphase filtering is a computationally efficient structure for applying resampling and filtering to a signal. Most digital filters can be applied in a polyphase format, and it is also possible to create efficient resampling filterbanks using the same theories.

This post will walk through a reference implementation of both the downsampling polyphase filter and a downsampling polyphase filterbank using scipy, numpy, matplotlib, and python. It should also highlight some of...


Python scipy.signal IIR Filter Design

Christopher Felton May 13, 20124 comments
Introduction

The following is an introduction on how to design an infinite impulse response (IIR) filters using the Python scipy.signal package.  This post, mainly, covers how to use the scipy.signal package and is not a thorough introduction to IIR filter design.  For complete coverage of IIR filter design and structure see one of the references.

Filter Specification

Before providing some examples lets review the specifications for a filter design.  A filter...


Delay estimation by FFT

Markus Nentwig September 22, 200750 comments
Given x=sig(t) and y=ref(t), returns [c, ref(t+delta), delta)] = fitSignal(y, x);:Estimates and corrects delay and scaling factor between two signals Code snippet

This article relates to the Matlab / Octave code snippet: Delay estimation with subsample resolution It explains the algorithm and the design decisions behind it.

Introduction

There are many DSP-related problems, where an unknown timing between two signals needs to be determined and corrected, for example, radar, sonar,...


Back from Embedded World 2019 - Funny Stories and Live-Streaming Woes

Stephane Boucher March 1, 20191 comment

When the idea of live-streaming parts of Embedded World came to me,  I got so excited that I knew I had to make it happen.  I perceived the opportunity as a win-win-win-win.  

  • win #1 - Engineers who could not make it to Embedded World would be able to sample the huge event, 
  • win #2 - The organisation behind EW would benefit from the extra exposure
  • win #3 - Lecturers and vendors who would be live-streamed would reach a (much) larger audience
  • win #4 - I would get...

Design IIR Filters Using Cascaded Biquads

Neil Robertson February 11, 201828 comments

This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads.  We’ll derive how to calculate the coefficients of the biquads and do some examples using a Matlab function biquad_synth provided in the Appendix.  Although we’ll be designing Butterworth filters, the approach applies to any all-pole lowpass filter (Chebyshev, Bessel, etc).  As we’ll see, the cascaded-biquad design is less sensitive to coefficient...


Already 3000+ Attendees Registered for the Upcoming Embedded Online Conference

Stephane Boucher February 14, 2020

Chances are you already know, through the newsletter or banners on the Related sites, about the upcoming Embedded Online Conference.

Chances are you also already know that you have until the end of the month of February to register for free. 

And chances are that you are one of the more than 3000 pro-active engineers who have already registered.

But If you are like me and have a tendency to do tomorrow what can be done today, maybe you haven't registered yet.  You may...


Design IIR Bandpass Filters

Neil Robertson January 6, 201811 comments

In this post, I present a method to design Butterworth IIR bandpass filters.  My previous post [1] covered lowpass IIR filter design, and provided a Matlab function to design them.  Here, we’ll do the same thing for IIR bandpass filters, with a Matlab function bp_synth.m.  Here is an example function call for a bandpass filter based on a 3rd order lowpass prototype:

N= 3; % order of prototype LPF fcenter= 22.5; % Hz center frequency, Hz bw= 5; ...

How to Find a Fast Floating-Point atan2 Approximation

Nic Taylor May 26, 201716 comments
Context Over a short period of time, I came across nearly identical approximations of the two parameter arctangent function, atan2, developed by different companies, in different countries, and even in different decades. Fascinated with how the coefficients used in these approximations were derived, I set out to find them. This atan2 implementation is based around a rational approximation of arctangent on the domain -1 to 1:

$$ atan(z) \approx \dfrac{z}{1.0 +...


Finally got a drone!

Stephane Boucher August 28, 20172 comments

As a reader of my blog, you already know that I have been making videos lately and thoroughly enjoying the process.  When I was in Germany early this summer (and went 280 km/h in a porsche!) to produce SEGGER's 25th anniversary video, the company bought a drone so we could get an aerial shot of the party (at about the 1:35 mark in this video).  Since then, I have been obsessing on buying a drone for myself and finally made the move a few weeks ago - I acquired a used DJI...


SEGGER's 25th Anniversary Video

Stephane Boucher July 18, 20172 comments

Chances are you will find this video more interesting to watch if you take five minutes to first read the story of the week I spent at SEGGER's headquarters at the end of June.  

The video is only a little more than 2 minutes long.  If you decide to watch it, make sure to go full screen and I would really love to read your thoughts about it in the comments down bellow.  Do you think a video like this succeeds in making the viewer want to learn more about the company?...


Went 280km/h (174mph) in a Porsche Panamera in Germany!

Stephane Boucher July 10, 201712 comments

Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos.  It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.  


Going back to Germany!

Stephane Boucher June 13, 20176 comments

A couple of blog posts ago, I wrote that the decision to go to ESC Boston ended up being a great one for many different reasons.  I came back from the conference energized and really happy that I went.  

These feelings were amplified a few days after my return when I received an email from Rolf Segger, the founder of SEGGER Microcontroller (check out their very new website), asking if I would be interested in visiting their headquarters...


ESC Boston's Videos are Now Up

Stephane Boucher June 5, 2017

In my last blog, I told you about my experience at ESC Boston and the few videos that I was planning to produce and publish.  Here they are, please have a look and any feedback (positive or negative) is appreciated. 

Short Highlight

This is a very short (one minute) montage of some of the footage that I shot at the show & conference.  In future shows, I absolutely need to insert clips here and there of engineers saying a few words about the conference (why they...


Back from ESC Boston

Stephane Boucher May 6, 20172 comments

NOT going to ESC Boston would have allowed me to stay home, in my comfort zone.

NOT going to ESC Boston would have saved me from driving in the absolutely horrible & stressful Boston traffic1.

NOT going to ESC Boston would have saved me from having to go through a full search & questioning session at the Canada Customs on my return2.

2017/06/06 update: Videos are now up!

So two days...


Launch of Youtube Channel: My First Videos - Embedded World 2017

Stephane Boucher April 5, 201721 comments

I went to Embedded World 2017 in Nuremberg with an ambitious plan; I would make video highlights of several exhibits (booths) to be presented to the *Related sites audience.  I would try to make the vendors focus their pitch on the essential in order to produce a one to three minutes video per booth.

So far my experience with making videos was limited to family videos, so I knew I had lots of reading to do and lots of Youtube videos and tutorials to watch.  Trade shows are...


New Comments System (please help me test it)

Stephane Boucher October 4, 201617 comments

I thought it would take me a day or two to implement, it took almost two weeks...

But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.  

Which means that:

  • You can easily add images, either by drag and drop or through the 'Insert Image' button
  • You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
  • You can add code snippets and they will be highlighted with highlights.js
  • You can edit...

3 Good News

Stephane Boucher March 9, 20161 comment
Good News #1

Last week, I announced a new and ambitious reward program that will be funded by the new Vendors Directory.

This week, I am happy to announce that we have our firsts two sponsors!  Quantum Leaps & Abelon Systems have agreed to pay the sponsorship fee to be listed in the new Vendors Directory.  Because of their support, there is now some money in the reward pool ($1,000) and enough to pay for the firsts 500 'beers' awarded.  Please...


The New Forum is LIVE!

Stephane Boucher February 18, 20161 comment

After months of hard word, I am very excited to introduce to you the new forum interface.  

Here are the key features:

1- Easily add images to a post by drag & dropping the images in the editor

2- Easily attach files to a post by drag & dropping the files in the editor

3- Add latex equations to a post and they will be rendered with Mathjax (tutorial)

4- Add a code snippet and surround the code with