## Interpolation Basics

This article covers interpolation basics, and provides a numerical example of interpolation of a time signal. Figure 1 illustrates what we mean by interpolation. The top plot shows a continuous time signal, and the middle plot shows a sampled version with sample time Ts. The goal of interpolation is to increase the sample rate such that the new (interpolated) sample values are close to the values of the continuous signal at the sample times [1]. For example, if...

## A Two Bin Solution

IntroductionThis is an article to hopefully give a better understanding of the Discrete Fourier Transform (DFT) by showing an implementation of how the parameters of a real pure tone can be calculated from just two DFT bin values. The equations from previous articles are used in tandem to first calculate the frequency, and then calculate the amplitude and phase of the tone. The approach works best when the tone is between the two DFT bins in terms of frequency.

The Coding...## Reduced-Delay IIR Filters

This blog gives the results of a preliminary investigation of reduced-delay (reduced group delay) IIR filters based on my understanding of the concepts presented in a recent interesting blog by Steve Maslen [1].

Development of a Reduced-Delay 2nd-Order IIR Filter

Maslen's development of a reduced-delay 2nd-order IIR filter begins with a traditional prototype filter, HTrad, shown in Figure 1(a). The first modification to the prototype filter is to extract the b0 feedforward coefficient...

## Part 11. Using -ve Latency DSP to Cancel Unwanted Delays in Sampled-Data Filters/Controllers

This final article in the series will look at -ve latency DSP and how it can be used to cancel the unwanted delays in sampled-data systems due to such factors as Nyquist filtering, ADC acquisition, DSP/FPGA algorithm computation time, DAC reconstruction and circuit propagation delays.Some applications demand zero-latency or zero unwanted latency signal processing. Negative latency DSP may sound like the stuff of science fiction or broken physics but the arrangement as...

## A Direct Digital Synthesizer with Arbitrary Modulus

Suppose you have a system with a 10 MHz sample clock, and you want to generate a sampled sinewave at any frequency below 5 MHz on 500 kHz spacing; i.e., 0.5, 1.0, 1.5, … MHz. In other words, f = k*fs/20, where k is an integer and fs is sample frequency. This article shows how to do this using a simple Direct Digital Synthesizer (DDS) with a look-up table that is at most 20 entries long. We’ll also demonstrate a Quadrature-output DDS. A note on...

## Somewhat Off Topic: Deciphering Transistor Terminology

I recently learned something mildly interesting about transistors, so I thought I'd share my new knowledge with you folks. Figure 1 shows a p-n-p transistor comprising a small block of n-type semiconductor sandwiched between two blocks of p-type semiconductor.

The terminology of "emitter" and "collector" seems appropriate, but did you ever wonder why the semiconductor block in the center is called the "base"? The word base seems inappropriate because the definition of the word base is:...

## Reducing IIR Filter Computational Workload

This blog describes a straightforward method to significantly reduce the number of necessary multiplies per input sample of traditional IIR lowpass and highpass digital filters.

Reducing IIR Filter Computations Using Dual-Path Allpass Filters

We can improve the computational speed of a lowpass or highpass IIR filter by converting that filter into a dual-path filter consisting of allpass filters as shown in Figure 1.

...## A Lesson In Engineering Humility

Let's assume you were given the task to design and build the 12-channel telephone transmission system shown in Figure 1.

Figure 1

At a rate of 8000 samples/second, each telephone's audio signal is sampled and converted to a 7-bit binary sequence of pulses. The analog signals at Figure 1's nodes A, B, and C are presented in Figure 2.

Figure 2

I'm convinced that some of you subscribers to this dsprelated.com web site could accomplish such a design & build task....## IIR Bandpass Filters Using Cascaded Biquads

In an earlier post [1], we implemented lowpass IIR filters using a cascade of second-order IIR filters, or biquads. This post provides a Matlab function to do the same for Butterworth bandpass IIR filters. Compared to conventional implementations, bandpass filters based on biquads are less sensitive to coefficient quantization [2]. This becomes important when designing narrowband filters.

A biquad section block diagram using the Direct Form II structure [3,4] is shown in...

## Controlling a DSP Network's Gain: A Note For DSP Beginners

This blog briefly discusses a topic well-known to experienced DSP practitioners but may not be so well-known to DSP beginners. The topic is the proper way to control a digital network's gain. Digital Network Gain Control Figure 1 shows a collection of networks I've seen, in the literature of DSP, where strict gain control is implemented.

FIGURE 1. Examples of digital networks whose initial operations are input signal...

## Understanding the 'Phasing Method' of Single Sideband Demodulation

There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are:

- synchronous detection,
- phasing method,
- Weaver method, and
- filtering method.

Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION'...

## Understanding and Relating E_{b}/N_{o}, SNR, and other Power Efficiency Metrics

Introduction

Evaluating the performance of communication systems, and wireless systems in particular, usually involves quantifying some performance metric as a function of Signal-to-Noise-Ratio (SNR) or some similar measurement. Many systems require performance evaluation in multipath channels, some in Doppler conditions and other impairments related to mobility. Some have interference metrics to measure against, but nearly all include noise power as an impairment. Not all systems are...

## Four Ways to Compute an Inverse FFT Using the Forward FFT Algorithm

If you need to compute inverse fast Fourier transforms (inverse FFTs) but you only have forward FFT software (or forward FFT FPGA cores) available to you, below are four ways to solve your problem.

Preliminaries To define what we're thinking about here, an N-point forward FFT and an N-point inverse FFT are described by:

$$ Forward \ FFT \rightarrow X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N} \tag{1} $$ $$ Inverse \ FFT \rightarrow x(n) = {1 \over N} \sum_{m=0}^{N-1}...## Computing FFT Twiddle Factors

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...

## Handling Spectral Inversion in Baseband Processing

The problem of "spectral inversion" comes up fairly frequently in the context of signal processing for communication systems. In short, "spectral inversion" is the reversal of the orientation of the signal bandwidth with respect to the carrier frequency. Rick Lyons' article on "Spectral Flipping" at http://www.dsprelated.com/showarticle/37.php discusses methods of handling the inversion (as shown in Figure 1a and 1b) at the signal center frequency. Since most communication systems process...

## Design IIR Filters Using Cascaded Biquads

This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads. We’ll derive how to calculate the coefficients of the biquads and do some examples using a Matlab function biquad_synth provided in the Appendix. Although we’ll be designing Butterworth filters, the approach applies to any all-pole lowpass filter (Chebyshev, Bessel, etc). As we’ll see, the cascaded-biquad design is less sensitive to coefficient...## A Beginner's Guide to OFDM

In the recent past, high data rate wireless communications is often considered synonymous to an Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is a special case of multi-carrier communication as opposed to a conventional single-carrier system.

The concepts on which OFDM is based are so simple that almost everyone in the wireless community is a technical expert in this subject. However, I have always felt an absence of a really simple guide on how OFDM works which can...

## An Interesting Fourier Transform - 1/f Noise

Power law functions are common in science and engineering. A surprising property is that the Fourier transform of a power law is also a power law. But this is only the start- there are many interesting features that soon become apparent. This may even be the key to solving an 80-year mystery in physics.

It starts with the following Fourier transform:

The general form is tα ↔ ω-(α+1), where α is a constant. For example, t2 ↔...

## Design IIR Bandpass Filters

In this post, I present a method to design Butterworth IIR bandpass filters. My previous post [1] covered lowpass IIR filter design, and provided a Matlab function to design them. Here, we’ll do the same thing for IIR bandpass filters, with a Matlab function bp_synth.m. Here is an example function call for a bandpass filter based on a 3rd order lowpass prototype:

N= 3; % order of prototype LPF fcenter= 22.5; % Hz center frequency, Hz bw= 5; ...## Adventures in Signal Processing with Python

Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being a good neighbor to The MathWorks. While I don’t make it a secret of my dislike of many aspects of MATLAB — which I mention later in this article — I do hope they can improve their software and reduce the price. Please note this...

## Sum of Two Equal-Frequency Sinusoids

Some time ago I reviewed the manuscript of a book being considered by the IEEE Press publisher for possible publication. In that manuscript the author presented the following equation:

Being unfamiliar with Eq. (1), and being my paranoid self, I wondered if that equation is indeed correct. Not finding a stock trigonometric identity in my favorite math reference book to verify Eq. (1), I modeled both sides of the equation using software. Sure enough, Eq. (1) is not correct. So then I...

## Computing FFT Twiddle Factors

Some days ago I read a post on the comp.dsp newsgroup and, if I understood the poster's words, it seemed that the poster would benefit from knowing how to compute the twiddle factors of a radix-2 fast Fourier transform (FFT).

Then, later it occurred to me that it might be useful for this blog's readers to be aware of algorithms for computing FFT twiddle factors. So,... what follows are two algorithms showing how to compute the individual twiddle factors of an N-point decimation-in-frequency...

## Free DSP Books on the Internet

While surfing the "net" I have occasionally encountered signal processing books whose chapters could be downloaded to my computer. I started keeping a list of those books and, over the years, that list has grown to over forty books. Perhaps the list will be of interest to you.

Please know, all of the listed books are copyrighted. The copyright holders have graciously provided their books free of charge for downloading for individual use, but multiple copies must not be made or printed. As...

## Design IIR Butterworth Filters Using 12 Lines of Code

While there are plenty of canned functions to design Butterworth IIR filters [1], it’s instructive and not that complicated to design them from scratch. You can do it in 12 lines of Matlab code. In this article, we’ll create a Matlab function butter_synth.m to design lowpass Butterworth filters of any order. Here is an example function call for a 5th order filter:

## The DFT Magnitude of a Real-valued Cosine Sequence

This blog may seem a bit trivial to some readers here but, then again, it might be of some value to DSP beginners. It presents a mathematical proof of what is the magnitude of an N-point discrete Fourier transform (DFT) when the DFT's input is a real-valued sinusoidal sequence.

To be specific, if we perform an N-point DFT on N real-valued time-domain samples of a discrete cosine wave, having exactly integer k cycles over N time samples, the peak magnitude of the cosine wave's...

## Four Ways to Compute an Inverse FFT Using the Forward FFT Algorithm

If you need to compute inverse fast Fourier transforms (inverse FFTs) but you only have forward FFT software (or forward FFT FPGA cores) available to you, below are four ways to solve your problem.

Preliminaries To define what we're thinking about here, an N-point forward FFT and an N-point inverse FFT are described by:

$$ Forward \ FFT \rightarrow X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi nm/N} \tag{1} $$ $$ Inverse \ FFT \rightarrow x(n) = {1 \over N} \sum_{m=0}^{N-1}...## Minimum Shift Keying (MSK) - A Tutorial

Minimum Shift Keying (MSK) is one of the most spectrally efficient modulation schemes available. Due to its constant envelope, it is resilient to non-linear distortion and was therefore chosen as the modulation technique for the GSM cell phone standard.

MSK is a special case of Continuous-Phase Frequency Shift Keying (CPFSK) which is a special case of a general class of modulation schemes known as Continuous-Phase Modulation (CPM). It is worth noting that CPM (and hence CPFSK) is a...

## Python scipy.signal IIR Filter Design

IntroductionThe following is an introduction on how to design an infinite impulse response (IIR) filters using the Python scipy.signal package. This post, mainly, covers how to use the scipy.signal package and is not a thorough introduction to IIR filter design. For complete coverage of IIR filter design and structure see one of the references.

Filter SpecificationBefore providing some examples lets review the specifications for a filter design. A filter...

## Delay estimation by FFT

Given x=sig(t) and y=ref(t), returns [c, ref(t+delta), delta)] = fitSignal(y, x);:Estimates and corrects delay and scaling factor between two signals Code snippetThis article relates to the Matlab / Octave code snippet: Delay estimation with subsample resolution It explains the algorithm and the design decisions behind it.

IntroductionThere are many DSP-related problems, where an unknown timing between two signals needs to be determined and corrected, for example, radar, sonar,...

## Polyphase Filters and Filterbanks

ALONG CAME POLY

Polyphase filtering is a computationally efficient structure for applying resampling and filtering to a signal. Most digital filters can be applied in a polyphase format, and it is also possible to create efficient resampling filterbanks using the same theories.

This post will walk through a reference implementation of both the downsampling polyphase filter and a downsampling polyphase filterbank using scipy, numpy, matplotlib, and python. It should also highlight some of...

## Embedded World 2018 - More Videos!

After the interview videos last week, this week I am very happy to release two more videos taken at Embedded World 2018 and that I am proud of.

For both videos, I made extensive use of my two new toys, a Zhiyun Crane Gimbal and a Sony a6300 camera.

The use of a gimbal like the Zhiyun makes a big difference in terms of making the footage look much more stable and cinematographic.

As for the Sony camera, it takes fantastic slow-motion footage and...

## Embedded World 2018 - The Interviews

Once again this year, I had the chance to go to Embedded World in Nuremberg Germany. And once again this year, I brought my video equipment to try and capture some of the most interesting things at the show.

Something new this year, I asked Jacob Beningo if he would partner with me in doing interviews with a few vendors. I would operate the camera while Jacob would ask the right questions to the vendors to make them talk about the key products/features that...

## Finally got a drone!

As a reader of my blog, you already know that I have been making videos lately and thoroughly enjoying the process. When I was in Germany early this summer (and went 280 km/h in a porsche!) to produce SEGGER's 25th anniversary video, the company bought a drone so we could get an aerial shot of the party (at about the 1:35 mark in this video). Since then, I have been obsessing on buying a drone for myself and finally made the move a few weeks ago - I acquired a used DJI...

## SEGGER's 25th Anniversary Video

Chances are you will find this video more interesting to watch if you take five minutes to first read the story of the week I spent at SEGGER's headquarters at the end of June.

The video is only a little more than 2 minutes long. If you decide to watch it, make sure to go full screen and I would really love to read your thoughts about it in the comments down bellow. Do you think a video like this succeeds in making the viewer want to learn more about the company?...

## Went 280km/h (174mph) in a Porsche Panamera in Germany!

Those of you who've been following my blog lately already know that I am going through some sort of mid-life crisis that involves going out there to meet people and make videos. It all started with Embedded World early this year, then continued at ESC Boston a couple of months ago and the latest chapter just concluded as I returned from Germany after spending a week at SEGGER's headquarters to produce a video to highlight their 25th anniversary.

## Going back to Germany!

A couple of blog posts ago, I wrote that the decision to go to ESC Boston ended up being a great one for many different reasons. I came back from the conference energized and really happy that I went.

These feelings were amplified a few days after my return when I received an email from Rolf Segger, the founder of SEGGER Microcontroller (check out their very new website), asking if I would be interested in visiting their headquarters...

## ESC Boston's Videos are Now Up

In my last blog, I told you about my experience at ESC Boston and the few videos that I was planning to produce and publish. Here they are, please have a look and any feedback (positive or negative) is appreciated.

Short HighlightThis is a very short (one minute) montage of some of the footage that I shot at the show & conference. In future shows, I absolutely need to insert clips here and there of engineers saying a few words about the conference (why they...

## Back from ESC Boston

NOT going to ESC Boston would have allowed me to stay home, in my comfort zone.

NOT going to ESC Boston would have saved me from driving in the absolutely horrible & stressful Boston traffic1.

NOT going to ESC Boston would have saved me from having to go through a full search & questioning session at the Canada Customs on my return2.

2017/06/06 update: Videos are now up!So two days...

## Launch of Youtube Channel: My First Videos - Embedded World 2017

I went to Embedded World 2017 in Nuremberg with an ambitious plan; I would make video highlights of several exhibits (booths) to be presented to the *Related sites audience. I would try to make the vendors focus their pitch on the essential in order to produce a one to three minutes video per booth.

So far my experience with making videos was limited to family videos, so I knew I had lots of reading to do and lots of Youtube videos and tutorials to watch. Trade shows are...

## New Comments System (please help me test it)

I thought it would take me a day or two to implement, it took almost two weeks...

But here it is, the new comments systems for blogs, heavily inspired by the forum system I developed earlier this year.

Which means that:

- You can easily add images, either by drag and drop or through the 'Insert Image' button
- You can add MathML, TeX and ASCIImath equations and they will be rendered with Mathjax
- You can add code snippets and they will be highlighted with highlights.js
- You can edit...