- filter design
- optimal least-squares impulse response : 5.3
- absolutely integrable
: 3.2.1
- acyclic convolution
: 3.3.5
- acyclic FFT convolution
: 9.1.2
- additive synthesis
: 6
| 11.4.1
| 20
| 20.8
| 21.6
- admissibility condition, wavelets
: 12.9.1.6
- alias component matrix
: 12.3.8
- aliased sinc function
: 4.1
- aliasing cancellation
: 12.3
- aliasing components
: 3.3.12
- aliasing theorem for the DTFT
: 3.3.12
- aliasing, time domain
: 9.1.4.3
- allpass filter
: 12.5.1
- amplitude envelope
: 11.4
| 20.10.1
- analysis modulation matrix
: 12.3.8
- analytic signal
: 5.6
| 5.6.1.1
| 6.1
| 20.10.1
- applications of the STFT
: 11
- asinc function
: 4.1
- audio
- filter banks : 11.7
- spectrogram : 8.3
- spectrogram hop size : 8.3.2.1
- auditory filter bank
: 8.3.1
- auditory filter shape
: 8.3.3.4
- autocorrelation
: 3.3.7
- autocorrelation computation
: 7.9
- autocorrelation function
: 16.2.3
- autocorrelation method of linear prediction
: 11.3.2.2
- bandpass filter
: 5.6
- Bark frequency scale
: 18.1
- Bark warping
: 18.3
- Bartlett window
: 4.5
- baseband signal
: 10.1.2
- basis signals
: 12.9.1
- bias
: 6.6.2
- biased autocorrelation
: 7
- biased sample autocorrelation
: 7.6
- bilinear transform
: 18.2
- bin number
: 8.1.3
- Blackman window
: 4.3.1
- Blackman window matlab example
: 19.1.1
- Blackman-Harris window
: 4.3.4
- family : 4.3
- bounded variation
: 15.18
- breakpoints
: 20.10.1.2
- brown noise
: 7.14
- Burg's method
: 11.3.2.2
- central limit theorem
: 17.9.1
- cepstral windowing
: 11.3.1
- cepstrum
: 5.8
- cepstrum, causal
: 5.9
- channel vocoder
: 20.5
- characteristic function
: 17.12.4
- Chebyshev bandpass filter design
: 5.5.2.2
- Chebyshev FIR filters
: 5.10.2
- Chebyshev optimal windows
: 4.13.2
- Chebyshev polynomials
: 4.10.4.1
- Chebyshev window
: 4.10
- by linear programming : 4.13
- chirp signal
: 10.2.1
| 11.6
- chirp, Gaussian-windowed
: 11.6
- chirplet
: 11.6
| 11.6
- chirplet frequency estimation
: 11.6.3.1
- chirplet signal modeling
: 20.8.2
- chirplet, spectrum
: 11.6.1
- circular convolution
: 9.1
- coherent addition of signals
: 7.15
- COLA (constant overlap-add)
: 8.1.1
- COLA constraint
: 9.2.1
- COLA constraint, frequency domain
: 9.3.2
- COLA dual
: 9.3
- colored noise
: 7.14
- complex demodulation
: 10.3.2
- complex signal modulation
: 10.3.2
- compression
: 12
- confidence interval
: 16.3.3
- confidence level
: 16.3.3
- conjugate quadrature filters
: 12.3.7
- constant overlap-add
: 21.1
- constant overlap-add window
: 8.1.1
| 9
- constant-overlap-add
: 9.2.1
- constant-Q filter banks
: 11.7.1
- constant-Q Fourier transform
: 12.9.1.6
- continuous Fourier theorems
: 3.4
| 15
- continuous wavelet transform
: 12.9.1.6
- convolution
: 3.3.5
| 9.1
- acyclic : 9.1.2
- acyclic in matlab : 9.1.2.1
- continuous time : 15.7
- cyclic : 9.1.1
- cyclic, or circular : 9.1
- FFT overlap-add in matlab : 9.2.5
- FFT, overlap-add : 9.2
- in matlab : 9.1.3
- short signals : 9.1
- convolution theorem
: 3.3.5
| 3.3.5
| 15.7
- correlation
: 3.3.6
- correlation analysis
: 16.2
- correlation theorem
: 3.3.6
| 3.3.7
- covariance
: 7.4
- covariance lattice methods
: 11.3.2.2
- covariance method, linear prediction
: 11.3.2.2
- critical band of hearing
: 8.3.2
- critical downsampling
: 20.10.1.2
- cross-correlation
: 16.2.1
- cross-power spectral density
: 16.2.2
| 16.2.2
- cross-synthesis
: 11.2
- cubic phase interpolation
: 11.4.2.1
- cubic splines
: 5.7
- cut-off frequency
: 5.1
- cycles per second
: 15.1
- cyclic autocorrelation
: 7.8
- cyclic convolution
: 9.1
- cyclic FFT convolution
: 9.1.1
- dc sampling filter
: 10.3.1
- decimation operator
: 12.1.2
- deconvolution
: 9.1.2
- delta function
: 15.10
- demodulation, complex
: 10.3.2
- demos
: 11.9
- denoising
: 7.1.1
- deterministic
: 6.7.2
- deterministic part
: 11.4.3.2
- detrend
: 7.9
- DFT filter bank
: 10.3
| 10.3.4.2
- differentiation theorem
: 15.2
| 15.18
- differentiation theorem dual, DTFT
: 3.3.13
- differentiation theorem dual, FT
: 15.3
- digital filter design
: see filter designtextbf
- digital prolate spheroidal sequence
: 4.8
- window : 4.8
- Dirichlet function
: 4.1
- discrete time Fourier transform (DTFT)
: 3.1
- discrete wavelet filterbank
: 12.9.1.8
| 12.9.1.8
- discrete wavelet transform
: 12.9.1.7
- discrete-time Fourier transform
: see DTFTtextbf
- Dolph window
: 4.10
- Dolph-Chebyshev window
: 4.10
- comparison to Hamming : 4.10.3
- definition : 4.10.4.2
- length computation : 4.10.4.4
- main-lobe width : 4.10.4.3
- theory : 4.10.4
- double-factorial
: 17.12.3
- downsampling
: 3.3.12
- downsampling (decimation) operator
: 12.1.2
- DPSS
: see digital prolate spheroidal sequencetextbf
- DPSS window
: 4.8
- DTFT definition
: 3.3
- DTFT Fourier theorems
: 3.3
- aliasing theorem : 3.3.12
- convolution theorem : 3.3.5
- correlation theorem : 3.3.6
- downsampling theorem : 3.3.12
- energy theorem : 3.3.8
- even symmetry : 3.3.3.2
- linearity : 3.3.1
- power theorem : 3.3.8
- real signals : 3.3.3.1
- repeat operator : 3.3.10
- repeat theorem : 3.3.11
- scaling operator : 3.3.10
- scaling theorem : 3.3.11
- shift theorem : 3.3.4
- stretch operator : 3.3.9
- stretch theorem : 3.3.11
- symmetry : 3.3.3
- time reversal : 3.3.2
- duality, Fourier
: 9.3
| 10.5
- Durbin recursion
: 11.3.2.3
- dyadic filter bank
: 11.7.1
| 12.9.1.9
- dyadic wavelet filter bank
: 12.9.1.9
- effective length of a window
: 6.5.3
- energy theorem
: 3.3.8
- ensemble average
: 16.1.6
- entropy
: 17.11.1
| 17.11.1
- envelope break-points
: 11.4.2.1
- envelope follower
: 8.3.3.7
| 20.10.1
- equation error
: 18.3.1
- equiripple
: 5.3.1
- equivalent rectangular bandwidth
: 18.5
- ergodic
: 16.1.6
- estimator variance
: 16.3.3
- excitation pattern
: 8.3.1
| 8.3.2
| 8.3.3.2
- expected value
: 16.1.6
| 16.1.6
| 16.3
- exponential polynomial signal
: 11.6
- exponential window
: 4.6
- extended lapped transforms
: 12.7.2
- extremal frequencies
: 5.10.3
- F0
: see fundamental frequencytextbf
- F0 estimation
: 11.1
- fast Fourier transform
: see FFTtextbf
- FBS
: see filter-bank summationtextbf
- FFT
- convolution : 5
- convolution speed : 9.1.4
- filter banks : 11.7
- input buffer : 21.2
- fftshift utility in matlab
: 3.5.4.1
- filter
- audio, FIR : 9.1.4.1
- lossless : 12.5.1
- lossless examples : 12.5.2
- overlap-add FFT convolution : 9.2
- filter bank
- auditory : 8.3.1
- DFT : 10.3
- discrete wavelet : 12.9.1.8
- FFT based : 11.7
- Haar : 12.3.3
- multirate : 12
- paraunitary : 12.5
- perfect reconstruction : 12.3
- polyphase : 12.1.3
- Princen-Bradley : 12.7.2
- pseudo-QMF : 12.7.1
- wavelet : 12.9
- filter design
: 5
- frequency-sampling method : 5.4
| 5.6.2.3
- Hilbert transform filter : 5.6
| 5.6.2
- least-squares, linear-phase : 5.10.3
- linear programming : 4.13
- nonlinear-phase : 5.10.6
- nonparametric : 5.6.3
- optimal methods : 5.10
- specifications : 5.2
- window method : 5.5
- window method example : 5.5.2
- filter-bank interpretation of STFT
: 10
- filtered white noise
: 7.14
| 7.14
- finite support
: 7.6
- FIR (finite impulse response) filter
: 5.5
- FIR filter design
: see filter designtextbf
- first-order moment
: 17.12.1
- flip operator
: 15.8
- floor function
: 7.13
- FM
: see frequency modulationtextbf
- formants
: 8.2.1
- Fourier dual
: 3.5
| 10.5
- Fourier theorems
- continuous time : 3.4
| 15
- discrete time : 3.3
- DTFT : see DTFT Fourier theoremstextbf
- differentiation dual : 3.3.13
- FT
- differentiation dual : 15.3
- Fourier theorems (continuous time)
- convolution theorem : 15.7
- differentiation : 15.2
- flip theorem : 15.8
- Gaussian pulse : 15.11
- impulse train : 15.14
- modulation theorem : 15.6
- power theorem : 15.9
- rectangular pulse : 15.12
- sampling theorem : 15.16
- scaling or similarity : 15.4
- shift theorem : 15.5
- uncertainty principle : 15.17
- Fourier transform
- continuous/discrete : 3
- definition : 3.2
- existence : 3.2.1
- inverse : 3.2
- frame (of data)
: 8.1.2
- frequency envelopes
: 20.10
- frequency modulation
: 20.9
- brass synthesis : 20.9.2
- modulation index : 20.9.1
- operator : 20.9.3
- spectra : 20.9.1
- synthesis : 20.9
- voice synthesis : 20.9.3
- frequency resolution
: 6.4.1
| 6.5.2
- frequency sampling method for FIR digital filter design
: 5.4
- frequency scaling
: 11.5
| 11.5
- frequency trajectories
: 11.4.2.3
- frequency warping
- allpass : 18
- nonparametric : 19.5
- fundamental frequency estimation
: 11.1
- in matlab : 19.6
- test program : 19.6.1
- Gaussian
: 17
- characteristic function : 17.12.5
- closure under convolution : 17.3
- closure under multiplication : 17.2
- complex integral : 17.7
- distribution : 17.11.3.3
- Fourier transform : 17.8
- integral : 17.6.1
- maximum entropy property : 17.11
- moments : 17.12
- probability density : 17.10
- pulse : 15.11
- random variable, closed under addition : 17.13
- window : 4.11
| 17.1
- window transform : 4.11.2
- Gaussian-windowed chirp
: 11.6
- generalized function
: 15.10
- generalized Hamming window
: 4.2
- generalized Hamming window family
: 4.2.5
- generalized STFT
: 12.9.1.11
- geometric signal theory
: 12.9.1
- Gibbs phenomenon
: 4.1.1
- glossary of notation
: 14
- graphic equalizer
: 5.7
| 9.3.3
- graphical convolution
: 9.1
- group-additive synthesis
: 20.8.4.2
- Haar filter bank
: 12.3.3
- Hamming window
: 4.2.3
- comparison to Chebyshev : 4.10.3
- Hammond organ
: 20.4
- Hann window
: 4.2.1
| 4.2.1
- Hann-Poisson window
: 4.7
- hanning window
: 4.2.1
- harmonic
: 6.5.3
- harmonic comb
: 11.1.2
- Heisenberg uncertainty principle
: 15.17.1
- Hermitian
: 3.3.3.1
- Hermitian spectrum
: 5.6
- heterodyne-comb
: 20.11.1
- Hilbert space
: 12.9.1
- Hilbert transform
: 5.6.1
- Hilbert transform filter design
: 5.6
- Hilbert transform kernel
: 5.6.1.1
| 5.6.1.1
- history of spectral modeling
: 20
- hop size
: 7.12
| 8.3.2.1
| 9.2.1
- hop size (STFT)
: 8.1.3
- ideal lowpass filter
: 5.5
- identity system
: 20.10.1.3
- impulse train
: 15.14
- impulse, continuous time
: 15.10
- impulse, sinc
: 15.13
- independent events
: 16.1.2
| 16.3.1
- independent random variables
: 16.3.1
- inner product
: 3.3.8
| 15.9
- innovations sequence
: 11.3.2
- instantaneous amplitude
: 20.10.1
- instantaneous frequency
: 20.10.1
- instantaneous loudness
: 8.3.2
- instantaneous phase
: 20.10.1
- interpolation
- bandlimited : 3.3.12
- cubic phase : 11.4.2.1
- DFT bins : 3.5.2
- spectral : 3.5.1
- time-limited : 3.5.2
- interpolation kernel
: 3.5.2
| 8.3.3.3
- inverse filter
: 11.3.2
- inverse-FFT synthesis
: 20.8.1
| 20.11.3
- Kaiser window
: 4.9
- beta parameter : 4.9.1
- Kaiser-Bessel window
: 4.9
- lagged product
: 7.4
- Laurent expansion
: 5.9
| 5.9
- least squares estimation
: 6.7.1
- sinusoid parameters : 6.7.1
- likelihood function
: 6.7.3
- linear inequality constraints
: 5.10.4
- linear least squares
: 6.7.1.1
- linear objective
: 5.10.4
- linear phase
: 9.1.4.2
- linear phase term
: 3.3.4
- linear prediction
- autocorrelation method : 11.3.2.2
- covariance method : 11.3.2.2
- peak sensitivity : 11.3.2.1
- spectral envelope : 11.3.2
- linear programming
: 4.13
| 4.13.1
| 5.10.4
- linearity of the DTFT
: 3.3.1
- lossless filter
: 12.5.1
- lossless filter examples
: 12.5.2
- lossless transfer function matrix
: 12.5.1
- loudness
: 8.3
| 8.3.1